FOR THE NORTH AMERICAN MONSOON EXPERIMENT (NAME)

GUANG J. ZHANG \& J. CRAIG COLLIER SCRIPPS INSTITUTION OF OCEANOGRAPHI
I. INTRODUCTION

The North American Monsoon (NAM) system is an important warm-season climate regime in the southwestern U.S. and northwestern Mexico. Between its onset in June-July and its decay in September, locations over the arid terrain of NW Mexico and the SW U.S. experience a dramatic increase in rainfall (see Figure I). Historically, state-of-the-art climate models have not done well in simulating the spatial distribution and temporal variability of the warm-season precipitation associated with the monsoon system. Thus it is difficult to place the simulation of the NAM circulation in a global climate per-
spective and thereby to assess how regions like the southwestern U.S. might respond to a changed climate scenario. Unsatisfactory simulation of warm-season precipitation may be the result of deficiencies in horizontal resolution [1], simulated moisture transport [4] and convection (e.g., [5], [2], [3]).

MONTHLY-MEAN ZONAL-MEAN PRECIPITATION RATE


A modified Zhang \& McFarlane [7] convection parameterization has shown much-improved simulations of precipitation over the U.S. Great Plains [6] and of tropical climate [8], [9] in the National Center for Atmospheric Research (NCAR) climate model. In this study, we use the NCAR Commun ity Atmosphere Model (CAM3) and its predecessor, the Community Climate Model (CCM3) forced NAM. In this poster, we examine the following issues:
I. Simulation of the onset, evolution, and decay of the monsoon as well as the associated diurnal cycle of precipitation.
2. Possible improvements in the simulation of these features, as realized by increasing horizontal resolution and by use of an improved parameterization for convection.
II. DATA

To facilitate the model evaluation, we use a variety of data, whose records concur with the simulation period. These include gridded hourly U.S. precipitation data (HPD) from the National Weather Service (NWS) - Techniques Development Lab, complemented with rainfall measurements from the Tropical Rainfall Measuring Mission (TRMM) satellite as well as high-density observations from the NAME Enhanced Raingauge Network (NERN) over northwestern Mexico. We derive values of observed CAPE from the temperature and specific humidity fields of the NCEP-NCAR reanalysis.
III. RESULTS



In the Zhang-McFarlane parameterization of deep convection, updrafts and downdrafts carry water and heat vertically through a convective cloud. Just as in the real atmosphere, updrafts and downdrafts are diluted by entrainment of environmental air. In the NCAR model, the scheme is activated when the atmosphere becomes conditionally unstable. The scheme is closed with specification of the cloud-base mass flux. In the original scheme, this flux is proportional to the amount of CAPE in the atmosphere Zhang [6] found that the physical assumptions on which this closure is based are not valid for mid-
latitude continental convection and proposed an alternate closure based on the large-scale forcing of environmental virtual temperature. The new closure has been tested in CCM3 for simulation of the NAM.

IV. CONCLUSIONS
I. In the NCAR model, simulation of the North American monsoon suffers an unrealistic monsoonal evolution, a significant dry bias over the SW U.S., and convection which peaks at least 2 hours too early.
2. Except for an improved spatial distribution of rainfall over the SMO, most deficiencies are relatively insensitive to increasing horizontal resolution from T42 to T85.
3. Use of a revised convection parameterization, based on the large-scale forcing of environmental virtual temperature, results in a reduction in regional wet/dry biases, improved monsoonal evolution over specific regions, and elimination of diurnal cycle phase biases over the northern NAM domain. Reduction in diurnal cycle phase biases due to the new scheme occurs for a regime in which observed CAPE
lags observed precipitation.

