

NCAR/NSF GV New Automated Dropsonde System Overview

MPEX Meeting 13 December 2012

National Center for Atmospheric Research Earth Observing Lab Boulder, CO Terry Hock

GV Dropsonde Team

 ISF - Terry Hock, Dean Lauritsen, Nick Potts, Clayton Ardent, Chip Owens DFS - Jim Ranson, Cindy Bradley
 RAF - Steve Raumbuler, Mark Lord, Kurt Zrubek, Chris Webster
 CDS - Charlie Martin, Xuanyong Xu, FPS -Brigitte Baeuerle
 5 EOL Facilities

NCAR Dropsonde Technology Complete end to end solution

Aircraft Data Systems

Atmospheric Profiling

- Research quality sensors
- Fast sample rate- high vertical resolution
 - Pressure
 - Temperature
 - Humidity
 - Winds
- Capability of rapid launch, up to 8 sondes in the air simultaneously.
- Launch Platforms
 - Manned Aircraft Systems
 - Global Hawk UAS
 - Long duration balloons
 (Driftsonde)

ASPEN Software Data Quality and Temp Drop message

Automatic launcher

Flight path

G-V Design Criteria for New System

Technology developed for the NASA Global Hawk applied to the NSF/NCAR G-V System

Curtain of sondes every ~15km (rapid deployment up to 8 sondes)

Operator safety

Automatic Launcher Mini Dropsonde (<6oz)

Capacity: 50 Mini Dropsondes

Drop in turbulence

Optional dedicated Dropsonde operator

Remote Operation

No flight limitations

ARTH DBSERVING ABORATORY	Summary of	Capabilities	NCAF
Marche Data		New GV Dropsonde System	
	Automated launcher		
	No flight restrictions to operator thus no limiting criteria for drops during flight.		
	Automated sonde prep/sounding	2-button operation	
	Rapid Launches	~ 2 minute	
	Remote operation via AGS software	Multiple seat locations on G-V	
	Total Number of dropsonde in air simultaneously	8 Channel System	
	Dropsonde	Mini Dropsonde (167 grams)	
	Dropsondes capacity /flight	50 ++	
	Launcher located in baggage compartment		
	FAA Certification		

Sonde Storage & Ejection System

Launcher all designed by EOL DFS & RAF Manufactured by DFS Machine Shop

New GV Automated Launcher

Sonde Storage Container 5 columns of 10 sondes each Capacity 50 Mini Dropsondes

Sonde Ejection System

Launch Tube

Automatic Gate valves

Launcher Control Electronics

Ejection Air supply

Sounding Time Line

Task	Time	Location
Initialize & load sonde for launch	2 minutes	G-V Aircraft
Dropsonde Fall Time	~15 minutes @ 45,000 ft.	G-V Aircraft
Data transfer at completion of drop	~3 minutes	G-V Aircraft
ASPEN Processing	10-25 minutes	Ground Ops Center
Process data by student?		Ground Ops Center
Send data to GTS		Ground Ops Center
Send data files to Field Catalog		Ground Ops Center
Total Time per Sounding	30 – 45 minutes per drop	

AVAPS Ground Software (AGS)

<u>2 Button Sounding Interface</u>1) Load sonde2) Launch sonde

AGS on any computer

- Flight Computers
- Ground Computers
- System does not need dedicated Dropsonde operator

- Remote interface will be via the existing datagram protocol developed for the Global Hawk deployment.
- Data feeds will integrate into the existing Aeros database structure and display.
- Pilot over-ride for launch.

NCAR GPS Dropsondes (MIST, Mini, AVAPS II/Vaisala RD-94)

•

•

۰

•

۰

Research quality measurements Pressure – Temperate – Humidity Winds speed/direction **High vertical resolution** Multiple sonde in air simultaneously

Performance Specs

- Fall speed ~11 m/s at sea surface
- Fall Time: ~15 Min from 45K ft.
- PTU Sensors Measurement rate every **500 msec** ٠ (Vaisala RS-92 PTU module)
 - Vertical resolution : ~ 6 meters @ surface
 - Pressure
 - 0.1 mb resolution
 - 0.5 mb repeatability
 - Temperature
 - 0.1° resolution
 - 0.2° repeatability
 - Humidity
 - 1% resolution
 - 2% repeatability
- Winds Measurement rate every 250 msec
 - Horizontal Winds 0.1 m/s resolution
 - Vertical resolution : ~ 3 meters @ surface
- Stable parachute design

NCAR Mini Dropsonde (Same sonde used on NASA Global Hawk)

Hurricane Leslie from NASA AV-6 Global Hawk

HS3 Flight #1

Raw Data Plot, no Quality Control

Sonde Fall Time

Fall Time vs Altitude

Sonde Fall Velocity

Descent Velocity vs Altitude

Horizontal Distance traveled between Launch & impact Locations

Mini sondes released from Global Hawk during WISAR (Altitude range adjusted from 48,000 ft. to sea level)

ASPEN- Tabular QC'ed Data

 Aspen 3.1 - 7506

000				D2011030	04_084959_recomp	04_P.1			
		M	ain Raw QC	XY Graph Ske	w-T Levels V	WMO Comm	Summary		
D20110304_084959_recomp4_P.1 102015193 GH - WISPAR, GH - Science Flight 2 Global Hawk, NASA 872 (AV-6)									
Time (s)	Pres (mb)	Tdry (C)	RH (%)	Spd (m/s)	Dir (deg)	Alt (m)	Dz/dt (m/s)	Lat (deg)	Lon (deg)
17.00	140.2	-44.2	1.0	9.6	291.5	13698.8	-27.1	51.6733	-145.2537
17.25				9.7	291.3				
17.50	140.5	-44.2	1.0	9.8	291.0	13685.3	-27.1	51.6733	-145.2536
17.75				9.9	290.8				
18.00	140.8	-44.1	1.0	10.0	290.5	13671.8	-27.0	51.6733	-145.2535
18.25				10.1	290.3				
18.50	141.1	-44.1	1.0	10.2	290.0	13658.3	-26.9	51.6733	-145.2535
18.75									
19.00	141.3	-44.1	1.0	10.4	289.5	13644.8	-26.9	51.6733	-145.2534
19.25				10.5	289.3				
19.50	141.6	-44.0	1.0	10.6	289.1	13631.4	-26.8	51.6733	-145.2534
19.75				10.6	288.8				
20.00	141.9	-44.0	1.0	10.7	288.6	13618.0	-26.8	51.6733	-145.2533
20.25				10.8	288.3				
20.50				10.9	288.1			51.6732	-145.2532
20.75				11.0	287.9				
21.00	142.5	-44.0	1.0	11.1	287.7	13591.2	-26.7	51.6732	-145.2532
21.25				11.1	287.4				
21.50	142.8	-43.9	1.0	11.2	287.2	13577.9	-26.7	51.6732	-145.2531
21.75				11.3	287.0				
22.00	143.0	-43.9	1.0	11.3	286.8	13564.6	-26.7	51.6732	-145.2530
22.25				11.3	286.6				
22.50	143.3	-43.9	1.0	11.4	286.3	13551.2	-26.7	51.6732	-145.2529
22.75				11.4	286.1				
23.00	143.6	-43.9	1.0	11.4	285.7	13537.9	-26.7	51.6732	-145.2529
23.25				11.4	285.4				
23.50	143.9	-43.9	1.0	11.4	285.0	13524.5	-26.7	51.6732	-145.2528
23.75				11.4	284.6				
24.00	144.2	-43.9	1.0	11.3	284.1	13511.2	-26.7	51.6731	-145.2527
24.25				11.3	283.7				
24.50	144.5	-44.0	1.0	11.2	283.2	13497.9	-26.7	51.6731	-145.2526
24.75				11.2	282.7				
25.00	144.8	-44.0	1.0	11.1	282.1	13484.6	-26.7	51.6731	-145.2526
25.25				11.1	281.6				
25.50	145.0	-44.0	1.0	11.0	281.1	13471.3	-26.8	51.6731	-145.2525
25.75									
26.00	145.3	-44.0	1.0	10.9	280.1	13457.9	-26.8	51.6731	-145.2524
26.25				10.8	279.6				
26.50	145.6	-44.0	1.0	10.8	279.2	13444.4	-26.8	51.6731	-145.2523
26.75				10.7	278.8				

Ready

ACTIVE CONFIG: editsonde CONFIG DIR: /Users/martinc/.config/Aspen/

ASPEN – X-Y Data Plot

ABORATO

ASPEN – Temp Drop Significant and Mandatory Levels

00	0					Aspen 3.1	- 7506				
	🗐 🦕 🚦 🚱	?									
00	0	•	Main	Raw QC	D2 XY Graph	0110304_08 Skew-T	4959_recom	p4_P.1 WMO Comm	Summary		
	D20110304_084959_recomp4_P.1 102015193 GH – WISPAR, GH – Science Flight 2 Global Hawk, NASA 872 (AV-6)										
n A	Type	Time (s)	Pres (mb)	Tdry (C)	RH (%)	Dir (deg)	Spd (m/s)	Alt (m)	•		
0	Extrapolated Altitude	-1.0	70.0					18266			
1	62626 REL Location	-1.0	82.5								
2	Uppermost Thermodynamic	-1.0	82.5	-53.5							
3	Uppermost Winds	-1.0	82.5			260.2	10.6				
4	GDL Wind Speed	10.0	87.1			271.3	22.1				
5	GDL Wind Speed	19.2	91.1			263.2	4.5				
6	GDL Wind Direction	25.5	93.7			288.7	6.2				
7	GDL Wind Direction	37.8	98.9			286.3	9.3				
8	GDL Temperature	38.5	99.2	-46.6							
9	Standard	40.2	100.0	-46.6		272.7	8.5	15951			
10	GDL Wind Direction	44.2	101.9			251.4	7.8				
11	110-100mb Temperature	60.5	109.9	-46.6							
12	110-100mb Winds	60.5	109.9			231.2	7.6				
13	GDL Wind Direction	63.5	111.4			237.3	5.7				
14	GDL Wind Direction	68.2	113.9			278.6	5.3				
15	Uppermost Thermodynamic	74.0	116.8	-45.6	1.0						
16	GDL Wind Direction	75.8	117.7			263.6	5.5				
17	GDL Wind Speed	85.5	122.9			298.7	3.5				
18	GDL Temperature	88.0	124.2	-44.1	1.0						
19	GDL Wind Direction	98.2	129.8			256.5	7.8				
20	GDL Temperature	107.5	134.9	-45.1	1.0						
21	GDL Wind Direction	111.5	137.1			295.5	7.2				

ABORATO

ACTIVE CONFIG: editsonde CONFIG DIR: /Users/martinc/.config/Aspen/

Hurricane Sandy

Hurricane Sandy NOAA/AOC Drops ASPEN Synoptic Plot

ABORATOR

NCAR

G-V Dropsonde Project

Project Management & Documentation

- System is based upon the Global Hawk System
 - NASA HS3 2011, NASA HS3 2012, NOAA WISPAR
- Dedicated Project Manager
- Project Charter Document
- Technical Requirements Document
- Gantt Chart / Project Time Line
- Timeline July 2011 March 2013 (21 months)
- EOL Staff FTE: ~4.5 yrs (Techs, Eng, Mechanics, Management)

Current Schedule & Status

- Completion of Sonde storage and Ejection Assembly Oct 2012
- Core Software Development June to Dec 2012
- Lab System Testing and preliminary G-V Integration Nov to Dec 2012
- GV Installation and ground aircraft testing Jan 2013
- Flight Tests Feb 2013
- First Deployment May June 2013 MESOSCALE PREDICTABILITY EXPERIMENT (MPEX)