Overview of Agricultural Production Systems

Guillermo Podestá University of Miami, Rosenstiel School

A Difficult Task...

Provide overview of relevant issues in agricultural production systems
 BUT...
 Quite diverse audience:

- Climate variability and predictability
- Land use change, ecosystem services, sustainability
- Biofuels

What I will try to do...

 Provide overview of agricultural ecosystems (for the various audiences)

Present a few ideas to foster discussion

Agricultural Ecosystems

- Complex natural/human systems
- Have characteristics of natural ecosystems
 - Non-linearities, feedbacks, multiplicity of scales
- PLUS complexities of human decision-making under uncertainty
 Understanding agroecosystems requires integrated approach

Agricultural Ecosystems - 2

- Production decisions mostly made by individuals, embedded in a social context
 - Multiple objectives, often conflicting
- Individual characteristics
 - Risk tolerance, loss aversion
- Social interactions
 - Social networks: learning, technology diffusion

Agricultural Ecosystems - 3

Related global change issues:

- Land use changes
- Irrigation is main user of scarce freshwater
- Deforestation, desertification
- Global food security
- Biodiversity, GMOs

Agricultural Ecosystems - 4

Huge economic importance
 Globalized trade

Soybeans

Source: FAO Statistics

Agriculture and Climate

- Human sector most sensitive to climate variability/change
- Confluence of events:
 - Enhanced technological capabilities
 - Better understanding of climate system
 - Higher awareness of climate influence on human activities
- RESULT: Increased demand for climate information in agriculture

Climate Information Systems

- An effective climate information system (or climate service) will not develop spontaneously
- A climate information system has to be informed and supported by an appropriate research program *throughout* its initial phase

Research supporting climate information systems must evolve:

Research Stages - Exploratory

Pilot

Stage

Operational

Stage

Associations between climate and agriculture?

- Statistical analyses of historical data
- Simple modeling

Exploratory

Stage

- Issue scoping: surveys, focus groups
- Partners: academic institutions or governmental research agencies

Historical Maize Yields & ENSO

Maize Yield & Technology Trend

Research Stages - Pilot

Exploratory Stage

- More sophisticated, realistic modeling
- Risk management studies
 - Can we react to climate info? How? Why not?
- Economic, social, institutional dimensions
 - Understanding decision-making process
 - Value of climate information
 - Best institutional structures?

Mapping Realistic Decisions

Owned Land

Land Allocation Decisions

Rented Land

oybean

Over 50% of agriculture in the Pampas is done on rented land

Research Stages – Operational (?)

Research topics: broad spectrum, but highly specific issues

Continuous assessment

 Strategic partnerships crucial: with BOTH operational agencies AND stakeholder groups

Commitment to Outreach

USO DE INFORMACION CLIMATICA

PARA LA TOMA DE DECISIONES **EN LA PRODUCCION AGRICOLA**

Este suplemento forma parte de la edición Nº 269 de la revista CREA, correspondiente a marzo de 2003.

Nueva herramienta para monitorear el clima

El Índice de Precipitación Estandarizado permite cuantificar

la ocurrencia y duración de los períodos secos y húmedos

suquía se un fenément) neumente en la Argentina, auya apa- 🛛 Si blun esto índice mantiene una amplia aceptación en el mundo desde da, dende el carácter benigno del dimo receicio munta decencientes del mismo

or of programs Electronically in the Environment do in Fun- El IFE os una de los indicadoros bai'n Nacio-J de Cancies de EEUU, distintes itetatuciones aguntines y es- oit o los exectos de procipitación, debido e que sólio r trathunidences adhibiting on al Sawido Metanetérico Nacional (Si/ifi) en la in marcha dul Índik o dy. Pruoipit-idión Est-ind-rizado (IPE o SPI, por sus

ión, produce sovoros impactos accioecon/micos, particular- su dosarrollo en 1963, y on la Agantina ya fuo invortijado, h no fue utilizado acompionalmente po el cais. Por esta rezón, el teis en la imperientación ciluto del IFE para 31 localidades de la para », y como perte del Proyecto Cime de A/CriEA. Les húmoria, con intención de extenderto a todo el territorio ntos do heciando ceso amiso de la temporatura y do kes oa cunntificarios on

PÁGINA 72

Relevant Climate Scales

Scale	Issues	
Weather	Tactical decisions	
Intra- seasonal	Crop stresses; Yield prediction	<image/>
Interannual	Yield and income variability; Use of seasonal forecasts	
Interdecadal	Infrastructure planning; Land use change	

Climate Information Components Historical data and statistics

Recent climate conditions

Seasonal climate forecasts

Also: "plausible" decadal scenarios, longer scales?

Decadal Climate Variability

- Drastic changes in agricultural production systems in the Pampas in recent decades
- Partly due to climate variability, but also other factors:
 - Increased global demand for commodities
 - Macroeconomic changes
 - New technologies
 - New institutions (e.g, INTA, AACREA, AAPRESID)

Changes in Production Systems

Northern Cordoba: climatically marginal region

Key Questions - 1

ш s

 What will be the consequences of "transplanting" production systems from the Pampas to marginal regions?

medio ambiente y desarrollo

118

Análisis sistémico de la agriculturización en la pampa húmeda argentina y sus consecuencias en regiones extrapampeanas. sostenibilidad, brechas de conocimiento e integración de políticas

D. Manuel-Navarrete, G. Gallopín, M. Blanco, M. Díaz-Zorita, D. Ferraro, H. Herzer, P. Laterra, J. Morello, M.R. Murmis, W. Pengue, M. Piñeiro, G. Podestá, E.H. Satorre, M. Torrent, F. Torres, E. Viglizzo, M.G. Caputo, A. Celis

División de Desarrollo Sostenible y Asentamientos Humanos

Santiago de Chile, diciembre del 2005

Key Questions - 2

How will production systems that evolved partly in response to enhanced climate respond if conditions revert to drier epochs or change permanently?

Smooth link to biofuels...

Can agricultural area be sustained or expanded if climate gets drier?

Two Main Biofuels

Bioethanol

Biodiesel

Contentious/Uncertain Issues

Food security vs. fuel security Biofuel balances Economic (\$\$) • Energetic • Greenhouse gases Small farmers vs. large operators Intensive (costly?) technologies

Summary

 Agricultural ecosystems are complex natural/human systems

Real-world decisions of economic importance

• High relevance to many global change issues

Climate is an important source of risk to agriculture, but not the only one...

 There is an increasing demand for climate information to support agricultural decisions

Summary - 2

 An effective climate information system (or climate service) will not develop spontaneously

 A climate information system has to be informed by an appropriate research program

A proposal for discussion...

- IAI / CLIVAR / IDRC may sponsor development of a series of "white papers" :
 - Opportunities and impediments for use of new climate knowledge
 - Perspectives for biofuel production in the Americas
 - Future agricultural production in the Americas (global demand, land use, sustainability, technological innovations)

Content of "white papers"

Survey/integrate current knowledge Clearly identify knowledge gaps Acknowledge multiple perspectives (often value-laden) about an issue Address topics from an "integrative" science" perspective Provide policy guidance based on "best available science"

Funding Gratefully Acknowledged!

Methods & Models for Integrated Assessment
Biocomplexity in the Environment: Dynamics of Coupled Natural & Human Systems

- Environment and Sustainable Development
- Human Dimensions of Global Change
- Regional Integrated Science & Assessments

- Initial Science Program Phase 2
- CRN Program Phase 2

Plausible scenarios – Cordoba

Linear trends fitted to moving25-year windows

Fitted trends projected (starting from median of last 10 yrs)

Risk to Soybean Profits

Strategic Partnerships

AACREA: non-profit farmers' organization Groups of 8-12 farmers About 150 groups in Argentina "Early adopters" De facto" extension functions Large multiplicative effect

Pronósticos climáticos para la toma de decisiones

HR H

- Un proyecto clave para la toma de decisiones y manejo de agrosistemas en la región pampeana.

- AACREA tendrá un rol central en la coordinación admin la provín dels

Why historical information?

- Lack of knowledge about local climatology
 - What is "normal"?
 - Recent arrivals to agriculture
 - Greater memory of recent events
- How to interpret seasonal forecasts
 - Boundaries between terciles?

Why diagnostic information?

- Provides context for decisionmaking
 - Refine previouslymade decisions
 - Helps interpret forecasts
- Relevant span is sector-dependent

