African Monsoon Multidisciplinary Analyses
Afrikanske Monsun: Multidisiplinære Analyser
Afrikaanse Moesson Multidisciplinaire Analyse
Analisi Multidisciplinare per il Monsone Africano
Afrikanischer Monsun: Multidisziplinäre Analysen
Analisis Multidiciplinar de los Monzones Africanos
Analyses Multidisciplinaires de la Mousson Africaine

#### What is AMMA?

#### 1. Aims

"AMMA is a coordinated international project to improve our knowledge and understanding of the *West African monsoon* (WAM) and its variability with an emphasis on *daily-to-interannual timescales* "

#### International aims are:

- •To improve our understanding of the WAM and its influence on the physical, chemical and biological environment regionally and globally.
- •To provide the underpinning science that relates climate variability to issues of health, water resources and food security and defining the relevant monitoring strategies.
- •To ensure that the multidisciplinary research carried out in AMMA is effectively integrated with prediction and decision making activity.



#### What is AMMA?

# 2. A multidisciplinary approach



# The geophysical sphere



## **Integrative science:**

- •West African Monsoon and the global climate
- The water cycle
- Surface atmosphere feedbacks
- Scaling issues in the West African Monsoon

#### Process studies:

- Convection and atmospheric processes
- Oceanic Processes
- Physical and biological processes over landsurfaces
- Aerosol and chemical processes in the atmosphere

Process studies are only the first step towards a better understanding and prediction of the African monsoon





# The largest regional precip deficit on last century



Fig. 3: The change in high summer (July-August) total precipitation (mm day¹), 1967-1998 minus 1948-1966, estimated from land surface records ('g55wld0098.dat' constructed and supplied by Dr. Mike Hulme at the Climatic Research Unit, Univ. of East Anglia, Norwich, UK).

# Spatial scales of observed rainfall variability





#### **Echelle Locale:** Echelle du couplage centrale pour l'hydrologie du Sahel









#### What is AMMA?

# 2. A multidisciplinary and multiscale approach

**Global:** 2-way interactions between the WAM & the rest of the globe (e.g role of SST patterns on WAM variability; impact of WAM on tropical Atlantic, export of aerosols/chemical species). <u>Variability from seasonal to decadal scales</u>

M

0

D

 $\mathbf{E}$ 

L

N

G

S

A

 $\mathbf{E}$ 

B

E

R

0

**Regional:** Monsoon Dynamics and Scale Interactions, Continental Water Cycle, Land and Ocean Processes, Aerosols and Chemistry <u>Variability from intraseasonal to interannual scales</u>

**Mesoscale:** Mesoscale Convective Systems, Vertical transports (Aerosols, Water, chemical species), Tropical Cyclones, Catchments and Vegetation <u>Intraseasonal variability</u>

**Sub-meso** (<10km): Hydrological Cycle, Vegetation Convective rain scale=>Coupling scale with hydrology (Sahel)=>Main scale of interest for agriculture, ...



#### What is AMMA?

# 3) A coordinated international effort



➤ Scientists from more than 25 agencies/institutions in more than 20 countries in Africa, Europe and the US are now involved: Algeria, Belgium, Benin, Burkina Faso, Cameroon, Chad, Congo, Denmark, France, Germany, Ghana, Italy, Ivory Coast, Mali, Morocco, Niger, Nigeria, Senegal, Spain, Togo, UK, US



➤ Endorsement received from WCRP (CLIVAR & GEWEX), GCOS, IGAC...



>French, UK & USA funding agencies have declared support

- •France (12.5Meuros): Soundings, aircrafts, ground stations (aerosols, chemical species, water, ...), lidar, Doppler radar, ship, ..
- •UK (3Meuros proposal)
- ➤EU AMMA-IP consortium (12.7Meuros, 5 Years)







### **International Field Program: a strong component of AMMA**

- *The Long Term Observing Period (LOP)* is concerned with multi-year observations of the coupled atmosphere-ocean-land system to support analysis of <u>interannual variability of the WAM.</u>
- The Enhanced Observing Period (EOP, 2005-2007) To document over a climatic transect the <u>annual cycle</u> of the surface conditions & atmosphere and to study the <u>surface memory effects at the seasonal scale</u>. A major focus will be on improving radiosounding coverage & establishing surface flux stations (aerosols, chemical species, water, energy) over the continent.
- The Special Observing Period (SOP, 2006) will provide a <u>multi-scale & multi-process</u> detailed analysis of one monsoon season.

```
SOP 0 Dry phase (Jan-Feb)
```

SOP 1 Monsoon Onset (~ 1-30 June)

**SOP 2** Monsoon Maximum (~ 15 July - 15 August)

**SOP 3** Late Monsoon (~ 15 August - 15 September)



## The Core AMMA Region





# **Improved Radiosounding Network**





# SOP-1 ( ≈ 1 - 30 June 2006 ) « Monsoon Onset »

### **Scientific objectives:**

- ☐ To investigate the structure & evolution of the atmospheric boundary layer over the continent before, during & after the arrival of the monsoon ,
- □ To study the interaction with the drier easterly winds above & to the north, the evolution of the African Easterly Jet ,
- ☐ To identify the fundamental relationships between evolving properties of the ocean & land surfaces, the planetary boundary layer, & the monsoon system,
- ☐ To quantify the water & energy budget at synoptic and meso- scale.



### **SOP-1:** Main additional surface-based equipements:

- High resolution radiosounding network
- Lidar, Micro-lidars, Microwave radiometer, Doppler/polar radars, ...
- Surface stations from the coast to the Sahara (Meteo, Fluxes,

Radiation, Aerosol, Trace gases, GPS...)

- Constant level balloons launched near the gulf of Guinea
- French & USA cruises in the Gulf of Guinea









#### **SOP1: Instrumented aircrafts** (based in Niamey, Niger):

- French ATR-42 : flight-level turbulence & flux measurements
- German Falcon-20 : WIND Doppler lidar & dropsondes
- US NRL-P3 or (NOAA-P3, French Falcon-20): Doppler radar & LEANDRE-2 WV lidar









# SOP-2 (≈ 1 July-15 Aug 2006) « Monsoon Maximum »

### **Scientific objectives:**

- ☐ To investigate the structure, propagation & evolution of MCS,
- ☐ To understand the 2-way interactions with the synoptic environment (monsoon flow in BL, AEJ, AEWs, TEJ, dry intrusions, ...)
- ☐ To quantify the heat & moisture budget, & precipitation efficiency,
- ☐ To document the role of convective horizontal & vertical fluxes in atmospheric chemistry & aerosol distributions



#### **SOP-2:** Main additional surface-based equipements

- •Enhanced RS networks (« Quadrilaterals »), O<sub>3</sub> soundings
- Lidar, Micro-lidars, Microwave radiometer, ...
- Surface stations (Meteo, Fluxes, Radiation, Aerosol, Trace gases, GPS, ...)
- Driftsondes launched at N'Djamena (Chad)
- •Djougou (Benin):
  - X- and C- Doppler polarimetric radars (X-Port + Ronsard) + bistatic receiver (DLR), UHF-VHF wind profiler
  - Lightning detection network
- •Niamey (Niger):
  - S-POL (NSF proposal)
  - •Few ISSs (NSF proposal)









# SOP2: Instrumented aircraft (based in Niamey):

FR ATR-42 & F-20 ; UK BAe-146 ; DE F-20 US P3 NRL or/& NOAA P3

MCS, Environment (incl PBL), Chemistry & Aerosols









post-MCS & Stratiform region





# SOP-3 (≈ 15 Aug - 15 Sep 2006) « Late Monsoon »

### **Scientific objectives:**

- □ To investigate the evolution of MCS as they leave the WA continent & reach the Eastern Tropical Atlantic (→ Tropical cyclogenesis)
- To quantify the long range westward transport of aerosol and trace gases
- ☐ To document the microphysics of persistent MCS debris (high altitude anvil clouds) and their radiative impact



Enhanced radiosounding network: "Western quadrilateral":

EGEE cruise in the Eastern Tropical Atlantic (+ RV Ron Brown)

**Instrumented aircrafts** (based in Dakar, Senegal):

FR F-20; ? UK BAe-146?; ? DE F-20?; US NRL-P3 or ???

**Driftsondes?** 

US experiments in the eastern / central / western tropical Atlantic









African Monsoon Multidisciplinary Analyses
Afrikanske Monsun: Multidisiplinære Analyser
Afrikaanse Moesson Multidisciplinaire Analyse
Analisi Multidisciplinare per il Monsone Africano
Afrikanischer Monsun: Multidisziplinäre Analysen
Analisis Multidiciplinar de los Monzones Africanos
Analyses Multidisciplinaires de la Mousson Africaine