IASCLiP FORECAST FORUM (IFF)
(Issued August 8, 2011)

August-September-October 2011

Disclaimer: The forecast and the discussions in this forum in no way reflect the opinion of the contributing personnel’s institutions and organizations. These forecasts are experimental with voluntary contributions from ECPC/SIO, NASA/GMAO, RSMAS/UM, APCC/KOREA, COAPS/FSU, IRI, and NCEP-CFS forecasts downloaded from their website.

Process: The forecast forum comprises of a coalition of climate scientists working on IASCLiP including the modeling working group of the IASCLiP. We hold discussions analyzing the model forecast and current conditions to come with a “consensus” forecast.

Acknowledgements: APCC, COAPS-FSU, ECPC-SCRIPPS, NASA/GMAO, NCEP, RSMAS-UM

Special Thanks: Steven DiNapoli (COAPS)
Observations

The observations of the past 3 months continue to show weak to non-existent SST anomalies in the equatorial Pacific. The positive anomalies of SST in the Caribbean Sea and in the northwestern Atlantic affirms our earlier call for large Atlantic warm Pool year.

The convection in the Caribbean Sea and northwest Atlantic as noted by the negative OLR anomalies are consistent with the warm SST anomalies

NAO has continued to be negative in the last 2-3 months.
Evolution of Tropical Atlantic SST Indices

Fig. A1a. Tropical Atlantic Variability region indices, calculated as the area-averaged monthly mean sea surface temperature anomalies (°C) for the TNA [60°W-30°W, 5°N-20°N], TSA [30°W-10°E, 20°S-0] and ATL3 [20°W-0, 2.5°S-2.5°N] regions, and Meridional Gradient Index, defined as differences between TNA and TSA. Data are derived from the NCEP OI SST analysis, and anomalies are departures from the 1971-2000 base period means.

- Tropical Atlantic was much cooler in Jul 2011 than in Jul 2010.
- Positive SSTA persisted in both TNA and TSA since Feb 2011.
- Meridional Gradient Mode (TNA-TSA) was above-normal since May 2011.
- Minor negative ATL3 SST was observed in Jul.
ASO 2011 forecast based on current conditions

• Aug-Sep is the time of the year when SST anomalies established in late Spring dissipate going into fall months.

• All prevailing observations indicate that there will be no further warming of the AWP, if anything SST’s will probably drop further, closer to normal. If we were to persist with the current conditions, then the large AWP year will prevail through the Aug-Sep-Oct (2011) season.
Models

<table>
<thead>
<tr>
<th>Model</th>
<th>Reference</th>
<th>No. of Ensemble members</th>
<th>Coupled to ocean?</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCEP CFS v1</td>
<td>A</td>
<td>10</td>
<td>Yes</td>
</tr>
<tr>
<td>CCSM3.0</td>
<td>B</td>
<td>6</td>
<td>Yes</td>
</tr>
<tr>
<td>NASA GMAO</td>
<td>C</td>
<td>6</td>
<td>Yes</td>
</tr>
<tr>
<td>POAMA</td>
<td>D</td>
<td>10</td>
<td>Yes</td>
</tr>
<tr>
<td>ECPC</td>
<td>F</td>
<td>12</td>
<td>No. Prescribed (persisted SST & IRI forecasted SST)</td>
</tr>
<tr>
<td>CWB</td>
<td>G</td>
<td>10</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Index

<table>
<thead>
<tr>
<th>Reference</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>http://ecpc.ucsd.edu/projects/GSM_model.html</td>
</tr>
</tbody>
</table>
How have we fared in 2011?

In Jun 2011 we called for a large AWP year in JJA 2011. So far the forecast has verified.

We further claimed that there was increased likelihood of:

i) Slightly below normal rainfall over mid-west US (so far verified)

ii) Slightly above normal rainfall over southern Mexico (so far verified)

iii) Slightly below normal summer rainfall activity along the northern US Gulf coast (so far verified)

iv) Slightly above normal hurricane activity based on 1950-2010 climatology (this is early to call although we are already on the 5th named storm in beginning of August compared to climatology which has the 5th named storm by 31 August)
Contours are intra-ensemble spread and shading is anomaly of the ensemble mean in a, b, c, d, and e. In f model climatology of the 28.5°C isotherm is shaded in red and the 28.5°C isotherm from the individual ensemble forecasts are contoured.

MDR anomalous shear value of ensemble mean: 0.3014 m/s; suggests moderate westerly shear.
Contours are intra-ensemble spread and shading is anomaly of the ensemble mean in a, b, c, d, and e. In f model climatology of the 28.5°C isotherm is shaded in red and the 28.5°C isotherm from the individual ensemble forecasts are contoured.

MDR anomalous shear value of ensemble mean: 0.0588 m/s; suggests near normal shear.
Contours are intra-ensemble spread and shading is anomaly of the ensemble mean in a, b, c, and d. In e model climatology of the 28.5°C isotherm is shaded in red and the 28.5°C isotherm from the individual ensemble forecasts are contoured.

MDR anomalous shear value of ensemble mean: -2.4160 m/s; suggests strong easterly shear
Contours are intra-ensemble spread and shading is anomaly of the ensemble mean in a, b, c, d, and e.

MDR anomalous shear value of ensemble mean: 1.0994 m/s; suggests strong westerly shear.
Contours are intra-ensemble spread and shading is anomaly of the ensemble mean in a, b, c, d, and e. In f model climatology of the 28.5°C isotherm is shaded in red and the 28.5°C isotherm from the individual ensemble forecasts are contoured.

MDR anomalous shear value of ensemble mean: -0.2096 m/s; suggests moderate easterly shear
ECPC-COAPS

Contours are intra-ensemble spread and shading is anomaly of the ensemble mean in a, b, c, d, and e. In f model climatology of the 28.5°C isotherm is shaded in red and the 28.5°C isotherm from the individual ensemble forecasts are contoured.

MDR anomalous shear value of ensemble mean: 0.1293 m/s; suggests moderate westerly shear
Summary of Model Forecasts

<table>
<thead>
<tr>
<th>Feature</th>
<th>NCEP CFS v1</th>
<th>NASA GMAO</th>
<th>CCSM3</th>
<th>CWB</th>
<th>POAMA</th>
<th>ECPC-COAPS</th>
<th>Model’s CONSEN.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWP area anomaly</td>
<td>Large</td>
<td>Large¹</td>
<td>Large¹</td>
<td>Not Avail.</td>
<td>No AWP</td>
<td>Near normal (from IRI)</td>
<td>Large</td>
</tr>
<tr>
<td>Vertical shear anomaly in MDR</td>
<td>Moderate (Westerly)</td>
<td>Weak (Westerly)</td>
<td>Strong (Easterly)</td>
<td>Strong (Westerly)</td>
<td>Moderate (Easterly)</td>
<td>Moderate (Westerly)</td>
<td>Moderate (Westerly)</td>
</tr>
<tr>
<td>Strength of NASH or Bermuda high²</td>
<td>Weak</td>
<td>Weak</td>
<td>Weak⁴</td>
<td>Weak</td>
<td>Weak</td>
<td>Weak</td>
<td>Weak</td>
</tr>
<tr>
<td>Mid-west rain anomaly³</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Southern Mexican rain anomaly³</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1: Appearance of 28.5⁰C isotherm in ensembles over AWP is considered large anomaly in models where climatology of the model does not show AWP.

2: Based on the MSLP anomalies. 925hPa winds would have been better than 850hPa winds.

3: Unworthy of interpreting summer seasonal rainfall anomaly from these models

4: Based on 850 anomalous winds alone
Heuristic model forecasts

If we interpret the model forecasts and the current conditions then we anticipate the likelihood of the following to happen in ASO 2011 based on our understanding (and research) of the AWP impacts on remote and local climate:

a) A slightly larger than normal AWP to occur
b) A slightly weaker than normal Bermuda/North Atlantic subtropical high
c) A near normal vertical shear

Based on a), b) and c) above we anticipate from our past research work the likelihood of the following to happen in ASO 2011:

i) Slightly below normal rainfall over mid-west US
ii) Slightly above normal rainfall over southern Mexico
iii) Slightly below normal summer rainfall activity along the northern US Gulf coast
iv) Slightly above normal hurricane activity based on 1950-2010 climatology

We have a stronger consensus that the warming of the AWP in the ASO will not grow much further from what it is now. There is a likelihood that the Sea Surface Temperature may drop slightly, although it will continue to remain a large AWP year for ASO 2011.