


HIPPO Data Status

HIPPO 1: Final data submitted for RFO1-RFQO7

* lost all laser intensity after RFO7 landing in CHC due to opaque residue
on mirrors; tried to fix remotely but unsuccessful

e calibrations identical to START08/PreHIPPO

HIPPO 2: only quicklook data

» gradual decrease of signal throughout transect; detector, bandpass
filter, and focusing optics needed cleaning in CHC

* nylon cover not effective at protecting mirror surfaces on tarmac

HIPPO 3: only quicklook data

e improved mirror quality but still needed to clean interior optics at CHC
and return to ANC

In HIPPO-2 and HIPPO-3, often observed very low laser intensities on
detector which appeared to cause a high bias in data -> need add'l
laboratory studies (also caused linelocking problems at low altitudes)
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Example of low light biases
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Timing / Synchronization

VCSEL data acquisition triggered by pulse-per-second signal from GPS
e absorption feature scanned at 1500 Hz
* internal clock integrates 60 scans into At=0.04 s measurements (25 Hz)

hh:mm:ss timestamped by G-V data acquisition immediately after GPS
signal

x.00 data in archive is averaged —x.50 <t < +x.50
(i.e. 1 s average centered on x.00)

Other issues:

Any data when switching absorption lines (1853.03, 1853.37 nm) or
mode (direct, 2f) are automatically removed % 3 s in archived data




Calibrations: flowing and static

Flowing: critical orifice system (1-2500 sccm) (saturated or unsaturated)
 flows extremely stable and reproducible (2% over 2.5 years)
e avoids drifts in flow controllers, warm up times, PID controls
* flow only dependent upstream (not downstream) pressure
 use ice-water baths for saturator for reproducibility
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Static: : gt/

1. isolate VCSEL inside sealed housing R

2. add 10-100 mL liquid water _

3. immerse VCSEL/housing and reach [V}
steady-state temperature

4. Use lig. N,/organic solid-liquid baths .
or regulated temperature bath (£0.02 K stablllty at 80 C)

5. Clausius-Clapeyron egn. (Murphy and Koop, 2005) to determine
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Calibrations: 1) standard dilution of flows (1013 hPa, 298 K)

MBW-373LX
uu]l chilled mirror
hygrometer

critical
orifices Vv dr

or

ice-water bath
T=0C

VCSEL

@& water/ice @

saturator

caveat: unknown H,O in "dry" nitrogen (typically 1-5 ppmv)




Calibrations: 2) flowing, sub-saturated conditions at RT
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5 MIRTHE
E - <
BN &

A A
S HopkNS



Calibrations: 2) flowing, saturated conditions at RT

MBW-373LX
critical nusfl chilled mirror
orifice - hygrometer
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saturate "dry" nitrogen in 1 L volume, 200-1000 sccm flows (bath -85 to +20°C)
amount of water determined by Clausius-Clapeyron Eqn. (bath temp.)




Calibrations: 1) flowing, saturated conditions at RT
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two independent methods of saturation agree extremely well to 0.3 ppmv
=» bath, chilled mirror temperatures well-calibrated
A no dependence upon flow rates 190-1000 sccm = fully saturated flows




Calibrations: 3) flowing, saturated near bath temp.
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Calibrations: 3) flowing, saturated near bath temp.
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Calibrations: 4) organic, lig. N, bath

temperature-controlled bath

organic (melt. temp.)
chloroform (-63.41°C)
2-butanone (-86.64°C)
acetone (-94.7°C)




H,O partial pressure (mb)
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Calibrations:
a) chloroform

—— mixing ratio
—— temperature
---- pressure

4) organic, lig. N, slush bath
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b) methyl ethyl ketone
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chloroform (-63.41°C): 11.23 11.7+0.2
2-butanone (-86.64°C): 0.77 1.07 £ 0.21
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Experimental results at low light intensity

50
VCSEL reading versus controlled laser intensity reduction
(8200-17,400 ppmv)
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VCSEL shows a high bias below 350 mV; more studies needed




Changes for HIPPO 4/5

To help avoid low laser intensities on detector:
 harder dielectric coatings with Ni-mirrors (tested late in PREDICT)
* higher reflectivity of 1854 nm light than old mirrors
* replace fiber optic feedthrough with new one

...but ultimately the problem lies with interior, recessed surfaces on detector
side (i.e. one can clean the mirrors endlessly with little improvement)

Priorities now until mid-April:
1. Replace broken cartridge heater in mirror (broke in PREDICT)

2. Replace fiber optic feedthrough
3. Sensitivity experiments to very low laser light intensities
4. Calibrations at simultaneous temps., pressures, and mole fractions
of UT/LS
Submit HIPPO-2/HIPPO-3 data by end of April.




