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BLACK CARBON AND CLIMATE
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> Black carbon (BC) affectsselimate through:

“ e & 2
(i) direct (absorption of solar radiatigl

(i) indirect (c!oud effects) radiative fore

> What are tHe processes controlling BC (emissio

gitransport,‘removal).necessary to constrain global
aerosol models?

Airborne measurementé_of BC are limited and some
model-measurement comparisons-show large
discrepancies (Koch et aI Atmos Chem. Phys., 2009)

Global measurements of BC support process studies
that provide physical bounds.on global aerosol models




IPCC 2007: COMPONENTS OF RADIATIVE
FORCING FOR EMISSIONS OF AEROSOLS
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» Black carbon aerosol is an important component of anthropogenic climate forcing

IPCC, AR4, 2007 www.ipcc.ch
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» Spring: model results do not reproduce
the observations in the Arctic

« Summer: model results do not change
much between spring and summer like
measurements

 Transport has bigger impact on BC than
model microphysics?
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O
C i HIAPER POLE-TO-POLE OBSERVATIONS (HIPPO) OF

CARBON CYCLE AND GREENHOUSE GASES STUDY

R Poje-to”

» HIPPO science objectives:
HIPPO-1

Surface emissions
Transport timescales
Sinks for gases and aerosols

» (Global-scale measurements:

67°S to 85°N
~140+ vertical profiles

» HIPPO outreach website:
http://hippo.ucar.edu
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» (Global-scale measurements:

HIPPO-1: January 2009
-2: November 2009
-3: April 2010
-4: June 2011
-5: September 2011

» Fine-grained meridional cross sections:

2.2° latitude resolution in middle of profile
4 .4° |atitude resolution near surface
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Crew of NSF G-V in American Samoa, April 2010



SINGLE-PARTICLE SOOT PHOTOMETER (SP2)

« Single particle soot photometer (SP2)
detects refractory BC mass

» Laser-induced incandescence is linearly
proportional to mass and independent
of the mixing state of a BC particle

SP2 samples ~90% of BC mass and
~50% of BC number

Uncertainties: 25% mostly due to BC
mass calibration

Sample
Aerosol

High reflectivity | R
mirror WY Ak i i il V)
:YAG crysta i C i
et e Sample inlet on | |
S NSFINCARGV | 55
opica Aircraft )l
\ Avalanche / SR & =

photodiodes

Schwarz et al., (2006)



METHODOLOGY

To identify air masses for process studies and evaluate the
representativeness of the BC pole-to-pole observations, we
are using these tools and data:

= Chemical tracer analyses (CO, CO,, O,, H,0, CH,, fine-
mode aerosol)

» Global-regional model simulations (e.g., GMAO-GEOS,
RAQMS)

=Satellite data: MODIS fire and aerosol optical depth, AIRS
CO, MOPPIT CO

= Back trajectory analyses and convective influence diabatic
trajectories

= Ground station data: Baseline NOAA Global Monitoring
Division stations (Barrow, Mauna Loa, American Samoa)
and AERONET sites
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26 March — 5 April 2010, Southbound
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26 March - 15 April 2010
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HIPPO: NCAR/NSF G-V Pilots and Crew

400+ vertical profiles over 3 seasons

Chemical tracer analysis, satellite data, model studies, and back trajectory
analyses are being used to identify air masses to conduct process studies

and evaluate the representative gf these data

. were observed in the springtime

High BC mass loadings (10—1000 ng/kg)
2-to-pole burden of BC mass:

NH accounting for over 90% of the remote

» BC loadings from anthropogenic sources in ASI ften diffuse at

midlatitudes but well-stratified in the Arctic
= Biomass-burning plumes from southeast Asia contrlbute 0 large BC
loadings between the ITCZ and 40°N S
» |TCZ marks a sharp boundary to internemispheric transport ~
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HIPPO-1 BC
MEASUREMENT-MODEL
COMPARISON

AEROCOM MODELS
(January average):

* LMDzT-INCA (LSCE)
« ECHAMS (MPI)

« GCM/CAM

* MIRAGE

s CTM2

« CCM-Oslo

* LMDzT (LOA)

« GOCART

* MATCH

* IMPACT/DAO

« ECHAM-MADE (DLR)
* GISS

* TM5

* MOZART-GFDL-NCAR
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HIPPO G-V AIRCRAFT INSTRUMENTATION

Harvard/Aerodyne—HAIS
QCLS

CO,, CH,, CO, N,O (1 Hz)

NCAR AO2 O,:N, , CO, (1 Hz)

Harvard OMS CO, CO, (1 Hz)

NOAA CSD O, O; (7 Hz)

NOAA GMD O, O; (7 Hz)

NCAR RAF CO CO (1 Hz)

NOAA- UCATS, PANTHER | CO, CH,, N,0O, CFCs, HCFCs, ,
GCs (1 per 70 — 200 s) CH;Br, CH,CI

Whole air sampling: NWAS
(NOAA), AWAS (Miami),

O,:N,, CO,, CH,, CO, N,O, other GHGs,
COS, halocarbons, solvent gases,

MEDUSA (NCAR/Scripps) marine emission species, many more
Princeton/SWS VCSEL H,O (1 Hz)
NOAA SP2 Black Carbon (reported @ 7 Hz)

MTP, wing stores, etc

T, P, winds, aerosols, cloud water




( HIAPER POLE-TO-POLE OBSERVATIONS (HIPPO)

HIPPO-1
> 5 pole-to-pole missions, 4 seasons

HIPPO-1: January 2009
-2: November 2009
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Wofsy et al., Proc. R. Soc. A, in press
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