

HIPPO Science Team Meeting Boulder, Colorado 16-18 March 2011



# O<sub>3</sub> Intercomparison: RAQMS vs Measurements

Ru-Shan Gao<sup>1</sup>, Brad Pierce<sup>2</sup>, Ryan Spackman<sup>1,3</sup>, and David Fahey<sup>1,3</sup>

<sup>1</sup>NOAA Earth System Research Laboratory, Chemical Sciences Division <sup>2</sup>NOAA NESDIS/STAR <sup>3</sup>CIRES, University of Colorado

# Real-time Air Quality Modeling System (RAQMS)

• RAQMS is a valuable forecasting tool for intercontinental transport of pollutants that can affect US air quality—HIPPO data are very useful for validation of the model

- Online global meteorological and chemical modeling system
- Real-time assimilation of MLS  $O_3$  and OMI total column  $O_3$  and MODIS aerosol optical depth for model initialization:
- MLS data provide constraint on stratospheric O<sub>3</sub>
- OMI total column  $O_3$  increments the profile (shape stays same)
- Model physics and chemistry (unified stratospheric and tropospheric chemistry) and assimilated meteorology then govern the structure in  $O_3$
- All data shown are 2x2 degree 6 hour forecasts (00Z, 06Z, 12Z, 18Z) interpolated to HIPPO 10-s averages
- Details in Pierce et al. [2003; 2007; 2009], JGR
- Model results currently only available for HIPPO 3

Stratospheric O<sub>3</sub> (> 100 ppb) as functions of  $\theta$ 



# Tropospheric $O_3$ (< 100 ppb) as functions of $\theta$





Stratospheric  $O_3$  (> 100 ppb) curtain plots







Tropospheric  $O_3$  (< 100 ppb) curtain plots







#### Tropospheric O<sub>3</sub> correlation plots

## HIPPO-3 Southbound: Anchorage to Kona

 20-40N: Model misses low O<sub>3</sub> features on equatorward flank of polar jet (A, B)

 Model also underestimates low O<sub>3</sub> features associated with convective outflow (C) from tropics

Black: Obs Red: Model



## HIPPO-3 Southbound: Kona to Am Samoa

Model underestimates
 Iow O<sub>3</sub> features in the
 upper tropical
 troposphere
 associated with
 convective outflow of
 low O<sub>3</sub> MBL air from
 ITCZ

 Model generally captures O<sub>3</sub> in largescale BB plume

Black: Obs Red: Model





 ${\rm RAQMS}_{\rm G}$  -24hr OMI/MLS ASSIM Initialized 12Z 20100328



### Conclusions

• HIPPO measurements provide an excellent dataset for model validations and large latitudinal coverage over a short time period constrains model dynamics

• Comparisons demonstrate that real-time assimilation of MLS  $O_3$  and OMI total column  $O_3$  provides good constraints on modeled  $O_3$  distributions over the Pacific over a wide range of photochemical and dynamical environments

 RAQMS model does not capture O<sub>3</sub> minima associated with poleward meridional transport of low O<sub>3</sub> marine boundary layer air that was convectively lofted in the tropics—this contributes to the model high bias at northern midlatitudes