Chemical Tracers as Indicators of Transport Time Scales and Source Regions of Air in the UTLS

Eric Ray^{1,2}, Fred Moore^{1,2}, Karen Rosenlof¹, James Elkins¹, Geoff Dutton^{1,2}, Brad Hall¹, Dale Hurst^{1,2}, Bruce Daube³, Rodrigo Jimenez³, Sunyoung Park³, Jasna Pittman³ and Steve Wofsy³

> ¹NOAA Earth Systems Research Laboratory, Boulder, CO ²CIRES, University of Colorado ³Harvard University

Motivation

- The UTLS is a challenging region for models to simulate accurately due to the variety of transport processes that affect radiatively important trace gas distributions.
- How can we better use *in situ* trace gas measurements to make model independent estimates of the contributions of various transport processes to UTLS trace gas distributions?

UTLS Transport and Mixing Pathways

From Stohl et al., 2003 and Pan et al., 2010

Boundary Layer and HIPPO 1 UT/LS Tracer Gradients

Photolytic tracers – only destroyed above certain levels in the stratosphere.

Method

- Estimate the portion of UTLS tracer mixing ratio gradients due to "high road" transport using photolytic tracer correlations.
- Remove measured tracer gradients due to high road transport.
- Identify "low road" transport time scales and boundary layer latitudinal origins.

Stratospheric Fractions From Photolytic Tracer Correlations

Each measurement will have a profile of fractions of air from above each cutoff layer.

Removing "High Road" Piece of UTLS Measurements

For "age" tracers, use midlatitude stratospheric age profile and fractions of air from above the photolytic cutoff layers (blue line in plot at right) to adjust the measured mixing ratios.

For CH_4 , use ACE H_2O , CH_4 and N_2O measurements to estimate the CH_4 loss between photolytic cutoff layers and combine with the stratospheric fraction profile to adjust the measured CH_4 mixing ratios.

The resulting adjusted SF_6 , CO_2 and CH_4 mixing ratio gradients are ideally due only to "low road" transport.

"Low Road" Transport Times and Boundary Layer Origins From the Age Tracers

"Low Road" Transport Times and Boundary Layer Origins From the Age Tracers

"Low Road" Transport Times and Boundary Layer Origins From the Age Tracers

 Adjusted example correlation matches within uncertainty the 30-40N and 10S-Eq curves.

• Green and blue squares represent closest match of boundary layer correlations to adjusted LMS correlation.

• Probability is assigned based on distance in correlation space between observed and BL correlations within the uncertainty box.

 Large difference in transport time if parcel originated at 30-40N (≈ 1 year) vs. 10S-Eq (several months).

Probability Distribution Profiles From SF₆-CO₂ Correlations

- Purple and blue = higher probabilities, green and yellow = lower probabilities
- The total probability at each theta level is normalized to one.

Probability Distribution Profiles From SF₆-CO₂ Correlations

- Purple and blue = higher probabilities, green and yellow = lower probabilities
- The total probability at each theta level is normalized to one.

Add CH₄ to the Picture...

Reduces most of the ambiguity in boundary layer latitude origin, still working on merging the analysis using all three tracers.

From SF_6 vs. CO_2

From SF₆ vs. CH₄

HIPPO 1 30-60N

HIPPO 1 60-90N

HIPPO 1 0-30N

HIPPO 1 0-30S

HIPPO 1 30-60S

Summary

- HIPPO dataset is unique and highly valuable for studying transport in the UTLS.
- A new technique was demonstrated using photolytic tracer correlations to estimate the "high road" transport.
- SF₆, CO₂ and CH₄ measurements with the high road transport removed allow the calculation of "low road" transport times from the boundary layer into the UTLS as well as boundary layer latitudinal origins.
- Further work will include more species and subsequent HIPPO campaign measurements.