An Overview of Black Carbon Observations During HIPPO

A.E. Perring^{1,2}, J.P. Schwarz^{1,2}, J.R. Spackman^{1,2}, R.S. Gao¹, L.A. Watts^{1,2}, D.W. Fahey¹

HIPPO Science Team Meeting March 13th, 2012

Outline

- Context for and published results on HIPPO BC measurements
- Comparison of loadings during 5 phases
- Seasonal behavior of latitudinal average vertical profiles
- Mass distribution variations during H4 and H5
- Case studies
 - S. Hemisphere loadings during H4
 - Eastward excursion during H5
- Conclusions

BC in the global atmosphere

HIPPO I Model Intercomparison

Similar set of **AEROCOM** models to Koch study using 2000 inventory underestimated HIPPO I BC by a factor of ~5.

Pressure (hPa)

H1 – January

H3 – April

H4 – June

H5 – August

H2 – November

Southern hemisphere source: Biomass burning?

Torres et al., ACP, 2010

Northern hemisphere sources: Seasonality of transport and biomass burning?

>60N

20N - 60N

20S – 20N

<60S

Mass distributions: **HIPPO IV**

Very little geographic variation ۲

d(M)/d(log[D_p])

8

9

100

Similar to remote distribution from H1

V_{ed} Diameter (nm)

3

4

5

>60N

<60S

20N - 60N 20S - 20N

2

Mass distributions: **HIPPO V**

Some geographic variation

9

100

V_{ed} Diameter (nm)

Slightly different distributions than found during H1

d(M)/d(log[D_p])

Case Study 1: SH loadings during H5

- Midlevel pollution sampled during RF08 and RF10 (5 days apart)
- Compare particle size and coating state to low-loading case from H4

Case Study 1: SH loadings during H5

- Clear structure on RF8 and RF10
- Particles in the pollution layer were less coated
- Particle mass distributions were similar between polluted and clean conditions

Case Study 2: H4 Western excursion

- H4 RF9 and RF10 can be contrasted with typical Anchorage → Hawaii leg
- Allows us to look at evolution of Asian pollution

Case Study 2: H4 Western excursion

- Vertical profile from eastern (AK -> HI) transect shows higher loadings than the western transect.
- Mass distribution is larger in the western transect (180nm) than in the eastern (160nm) and more of the particles are coated (95% vs 50%)
- These measurements likely do not represent simple transport from Asian emissions regions

Conclusions

- HIPPO BC curtain plots show significant seasonal variability
- Latitudinally averaged seasonal cycles have been generated and will provide useful constraints for global transport models
- Variations are observed in both coating state and particle size