Ice supersaturation and cirrus clouds in HIPPO Global Campaign #1-5

Minghui Diao, Mark Zondlo

Civil and Environmental Engineering Princeton University

2DC, 260X 2DC ice probes, Dave Rogers, Al Cooper RAF Technical and Ground Crews HIPPO Global Campaign Science Team

> NASA Earth System Science Fellowship; Funding of NSF – 0840732; MIRTHE ERC 2012-March-12

Outline

Motivation

- cirrus clouds climate effects in NH vs SH
- Ice supersaturation in cirrus cloud formation
- Instrument and dataset
 - HIPPO 1-5
 - Water vapor; Temperature; Ice crystal number density
 - Uncertainties
 - Ice supersaturation (ISS) in HIPPO Global campaigns
 - ISS probability distribution function (PDF) in NH vs SF
 - Pole-to-Pole latitudinal and vertical distribution of ISS
- ISS and cirrus clouds formation
 - Separate difference phases of cirrus clouds in HIPPO
 - Cirrus cloud formation mechanism in NH vs. SH

Conclusion

Motivation

Cirrus clouds (235-185K, up to 40% coverage)

- <u>Climate effect</u>
 - Large & uncertain effect (IPCC, AR4, 2007)
 Warming or cooling (Chen et al. 2000)
 Difference NH vs. SH, anthropogenic activities, inhibit or invoke?
 Microphysical properties (ice crystal number and size distribution)
- Ice supersaturation (ISS)
 - Birthplaces of cirrus clouds: relative humidity with respect to ice (RHi) > 100%
 - Anthropogenic aerosols indirect effect (CCN, IN, lower ISS; organic aerosol, higher ISS)
- Challenges in observations
 - **Remote sensing** >> microphysical scale
 - Small scale observations limited by spatial temporal coverage
 - NH vs. SH, lack of sampling
 - INCA Campaign Prestwick 55N and Punta Arenas 55S (Ovarlez et al., 2000)
- Unsolved questions:
 - What is the global distribution of ISS by in situ observations in HIPPO?
 - Is there any difference in cirrus cloud formation mechanism between NH and SH?

Instrumentations and dataset

• Instruments

- *Water vapor*: the VCSEL hygrometer (accuracy 6%)
- *Temperature*: Rosemount temperature probe (± 0.5 K)
- *Ice crystal number density*: 2DC and 260X 2DC probes (25 μm, 10 μm)
- HIPPO 1 to 5 deployments
 - HIPPO1 did not have ice measurements
- Uncertainties

Relative humidity with respect to ice (T \leq -40 C)

- e: water vapor partial pressure
- **e**_s: saturated ice vapor pressure

Example of RHi uncertainty

Water vapor mixing ratio: 6% Temperature: 0.5 K

Clear sky RHi distribution in NH and SH

Probability density function of RHi

NH RHi distribution shifts to higher ISS NH: 71 hrs, SH: 26 hrs

Cloudy sky RHi distribution in NH and SH

Peaks at ~95% (NH) and ~94% (SH)

No obvious difference NH: 4 hrs, SH: 1hrs

SH higher frequency of ISS

Clear sky

Ice supersaturation (ISS) distribution in NH and SH

ISS magnitude

ISS vertical distribution

ISS magnitude between two hemispheres NH has higher ISS **# of ISS** between two hemispheres NH has more **# ISS** in observations

Clear sky ISS frequency density in NH and SH

ISS frequency density between two hemispheres NH has higher frequency of ISS for clear sky

Cloudy sky ISS distribution in NH and SH

ISS magnitude between two hemispheres NH has higher ISS

of ISS between two hemispheres NH has more **# ISS** in observations

Cloudy sky ISS frequency density in NH and SH

Bin by 25mb*10degrees

Total RHi observations In cloud

No obvious difference for in-cloud ISS frequency Limited cloud data in SH

Ice supersaturated regions (ISSRs) and ice clouds

ISSRs: spatially continuous region where RHi > 100%, with or without ice crystals

Phase 1 Clear sky ISSRs

Mean RHi value of each bin

Total ISSR + Cirrus clouds NH 3966; SH 4147

NH has broader scope of RHi inside totally clear sky ISSRs

-> PDF of RHi in clear sky

Phase 2+3+4 Cirrus cloud growth

Color Phase 1,2,3

Mean RHi value of each bin

Red: NH; Purple: SH Not much difference NH has boarder RHi scope during cirrus cloud growth.

Phase 5 Cloud sedimentation and evaporation

Conclusions

- 1. Ice supersaturation in NH and SH with global in situ HIPPO data
 - PDF of RHi NH shifts to higher ISS than SH for both in-cloud and clear sky
 - ISS frequency density
 - Clear sky NH > SH
 - In-cloud no difference
- 2. Evolutions from ISSR to cirrus clouds
 - Proposed a scheme to separate evolution of cirrus clouds by *in situ*, quasi-Eulerian sampling
 - Link large scale RHi difference to cloud microphysics
- 3. Mechanism of cirrus cloud formation in NH and SH
 - Separate out new-born clouds from aged clouds
 - NH vs. SH have similar mean RHi value at each cloud evolution phase
 - NH has broader range of RHI at each phase
 - Future work:

Meteorology, local sampling bias, instrument uncertainties (START08 SID_Num_2H).

Large scale dynamics? Aerosol background? Pollution?

Acknowledgement

RAF Technical and Ground Crews HIPPO Science Team

Fellowship and award

2008-2012	Princeton Francis Upton Fellowship
2009-2012	NASA Earth and Space Science Fellowship
2011	Princeton Environment and Climate Scholars Travel Grant
2010	Outstanding student paper award for AGU Fall Meeting, San Francisco
2009	Outstanding student paper award for AGU Spring Assembly, Toronto
2009	Travel Award to attend Water Vapor and the Climate System (WAVACS) summer school, France

Thanks! Questions?