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Selection of HIPPO CO, investigations

 Wunsch, Keppel-Aleks TCCON papers
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‘“State of the art” models
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» Basic problem:

* We can measure atmospheric variations in CO,, very
well, but relating them quantitatively to underlying
terrestrial processes continues to be limited by errors
In atmospheric transport models

« Two front HIPPO approach:

« Challenge and improve atmospheric transport models
so that they can be used to improve understanding of
fluxes

* Find ways to use atmospheric data to constrain fluxes
that are independent of atmospheric transport models



Without improving transport models, or waiting for them
to be improved, there are already metrics that can be
applied independent of transport errors, including:

* Terrestrial CO,: Growing season net flux (GSNF) and
dormant season net flux (DSNF)

* Oceanic O,: Seasonal net outgassing (SNO), seasonal
net ingassing (SNI)



[Yang et al., GRL 2007]
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Using light-aircraft profile data:

“Surface-optimized CASA
underestimates GSNF by 15%”

[Nakatsuka and Maksyutov, BGS 2009]

Have successfully said what the world is not (CASA), now let’s say
what it is — define hemispheric DSNF-GSNF quantitatively from data
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Hypothesis: like column averages, integrated HIPPO slices are also
much less sensitive to atmospheric transport errors.
Plan:

* Average detrended HIPPO CO, over Northern Hemisphere for 9
slices (Northern Hemisphere Meridian Integral):

yJCO2 x Pwt x LATwt
szthAth

NHMI =

* Analyze model output (TransCom3, CT, ACTM) to test hypothesis

 DSNF-GSNF values as a rigid constraint on global ecosystem
models and CO, inverse calculations

Possible add-ons:
« Combined analysis with TCCON and light-aircraft profile data
- Additional gases
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TransCom 3 a priori terrestrial signal estimates (CASA ca. 2000)
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Northern Hemisphere along 180 W

Amp =74

A CO; (ppm)

—O— HIPPO
A —— 2-Harm Fit

Month

Model-data mismatch components (missing “error bars”):

1)
2)

3)

Temporal (short-term) representativeness. Assess by sampling CT/ACTM along 180 W
every day and quantifying influence of synoptic variability

Interannual variability. Compare to corresponding model output or assess from CT/ACTM
over multiple years

Spatial representativeness. Address by sampling CT/ACTM along flight tracks and
compare to 180 W slice



NHMI in ppm compared to CASA-TransCom3 concentrations
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NHMI in moles, corrected for IH mixing and ocean component,
compared to CASA ca. 2000 fluxes
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Conclusions

The total number of moles in a slice down 180 W is relatively non-
sensitive to errors in model transport (x 4 %)

A slice down 180 W is a very good estimate of hemispheric mean
composition at monthly scales

A slice down 180 W primarily reflects seasonal hemispheric
exchange with the terrestrial biosphere, with small contributions
from interhemispheric exchange and oceanic fluxes (fossil fuel
contribution not yet analyzed)

HIPPO results show seasonal amplitude of 7.0 ppm

Correcting for ocean and interhemispheric mixing gives DSNF-
GSNF =5.8 X 10" mol CO,

Preliminary results suggest Northern Hemispheric CO, exchange
underestimated by 32% by ca. 2000 CASA

Next steps include analysis of spatial and temporal
representativeness, inclusion of “state-of-the-art” terrestrial flux
estimates, and exploration of NOAA aircraft and TCCON data



