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Introduction

Several studies have found evidence from high resolution cloud resolving models that entrainment may be appropriately characterized as having the
largest values near cloud base. Cumulus parameterizations based on these observations have shown notable improvements (Chikira and Sugiyama
2010; Murato and Ueno 2005; Sahany et al. 2012). Here we investigate this idea further using a relatively simple cumulus scheme in a coarse
resolution GCM in the context of convectively coupled equatorial waves. Our central question then is:

How does enhanced low-level entrainment affect convectively coupled Kelvin waves in a GCM?
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RAS was modified so that cumulus entrainment is a piece-wise linear function in height, with no major changes to the formulation = \
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@ Isolated areas of strong precipitation biases over
land masses are present in the control (Fig. 3a)

@ TRMM reveals much smoother gradients
between areas of light and heavy rain (Fig. 3f)
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Fig 7. The left and center panels show the first and second EOF modes of the vertical profile of diabatic heating (ie. Q1) associated with
Kelvin waves in the Indo-Pacific region, respectively. The right panel shows the percent variance explain of the first four modes.

Summary
@ Enhancing low-level entrainment does not affect annual mean tropical precipitation

significantly different from the Tokioka method (Fig. 3)
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4 Higher vertical wavenumbers (Fig. 7) can potentially explain a phase speed reduction of
~20-30 m s, but the Tokioka results and ERAi data seem to be inconsistent with this
idea.
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mimidzy, reducing the fast Kelvin wave bias in the control. Compared to other studies, this suggests that
Fig 4. Spectral power normalized by an approximate background Fig 5. Lagged regression of equatorial precipitation (10°5-10°N) onto a Kelvin . : : 5
spectrum (i.e. signal-to-noise ratio estimate) for symmetric wave index at the point of maximum Kelvin wave variance indicated by including other aspects of convection such as downdrafts or convective momentum transport
precipitation anomalies averaged from 10°S-10°N. Dispersion curves the vertical line. The black line indicates a least squares estimate of the are more important than the vertical structure of the convective entrainment.
derived from shallow water theory are shown for n=1 Rossby, Kelvin propagation speed estimated from TRMM and the red lines are that for
and inertia-gravity waves with equivalent depths of h=12, 25 and 50 each simulation. Stippling indicates significance at the 95% level.
m. The polygon shows a typical frequency domain used for filtering
spanning h=8 to h=200.
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