Air-Sea Interaction during active and suppressed phases of the MJO

Djamal Khelif1, Qing Wang2, and Jesus-Ruiz Plancarte1

(1) University of California, Irvine
(2) Naval Postgraduate School, Monterey

Research funded by ONR
UCI Instruments for DYNAMO

Starboard View
- Fast H2O Krypton

Aft View
- OXTS RT3003 GPS/INS
- Wave Scanning Lidar
- IR SST
- 858 Probes Side Slip (Top) Angle of Attack (Side)

5-Hole Radome Wind System

Static Pressure Ports Aft Left and Right (Manifolded)

LI-COR 7200 Fast H2O/CO2

Fast Temperature Probes

NOAA WP-3D N43RF DYNAMO 2011
New radome plumbing, effectively traps clouds (or rain) liquid water preventing it from obstructing the pressure xducers lines. Zero water-related failure in DYNAMO.
<table>
<thead>
<tr>
<th>Instrument</th>
<th>Flight</th>
<th>November 11 - December 13 2011</th>
<th>UTC Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>11/11</td>
<td>RF 01</td>
</tr>
<tr>
<td>Total Temperature Thermistor</td>
<td></td>
<td>11/13</td>
<td>RF 02 *</td>
</tr>
<tr>
<td>Rosemount Temperature</td>
<td></td>
<td>11/16</td>
<td>RF 03</td>
</tr>
<tr>
<td>LI-COR 7200 CO2</td>
<td></td>
<td>11/19</td>
<td>RF 04</td>
</tr>
<tr>
<td>LI-COR 7200 Humidity</td>
<td></td>
<td>11/22</td>
<td>RF 05</td>
</tr>
<tr>
<td>Mod. Krypton Hygrometer</td>
<td></td>
<td>11/24</td>
<td>RF 06</td>
</tr>
<tr>
<td>Pitch Angle Rate Sensor</td>
<td></td>
<td>RF 07 *</td>
<td>RF 08</td>
</tr>
<tr>
<td>Radome Gust System</td>
<td></td>
<td>RF 09 *</td>
<td>RF 10</td>
</tr>
<tr>
<td>OXTS RT3003</td>
<td></td>
<td>RF 11</td>
<td>RF 12</td>
</tr>
<tr>
<td>OXTS Base Station</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RIEGL LMS Q240i</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heitronics IR SST</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend

<table>
<thead>
<tr>
<th>UCI</th>
<th>Operational</th>
<th>Some data</th>
<th>No data</th>
<th>* NOAA DATA Gaps</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOAA AOC</td>
<td>Convection Mission</td>
<td>Boundary Layer Mission</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Convection Flights

Boundary Layer Flights
High (Multi-rate) Data from NOAA/AOC New Data System
Not QCed and Not Processed by AOC

Nov 28, 2012

Dec 13, 2012
\[V = V_a + V_p \]

Wind: \(V \)

\[
\begin{align*}
 u &= U_p - U_a D \\
 &\times \left[\sin \psi \cos \theta + \tan \beta (\cos \psi \cos \phi + \sin \psi \sin \theta \sin \phi) \\
 &+ \tan \alpha (\sin \psi \sin \theta \cos \phi - \cos \psi \sin \phi) \right] \\
 -&L (\dot{\theta} \sin \theta \sin \psi - \dot{\psi} \cos \theta) \\
 v &= v_p - U_a D \\
 &\times \left[\cos \psi \cos \theta - \tan \beta (\sin \psi \cos \phi - \cos \psi \sin \theta \sin \phi) \\
 &+ \tan \alpha (\cos \psi \sin \theta \cos \phi + \sin \psi \sin \phi) \right] \\
 -&L (\dot{\psi} \sin \psi \sin \theta + \dot{\theta} \cos \theta) \\
 w &= w_p - U_a D [\sin \theta - \tan \beta \cos \theta \sin \phi - \tan \alpha \cos \phi \cos \theta] \\
 &+ L \dot{\theta} \cos \theta
\end{align*}
\]

where \(u_p \) and \(v_p \) are the east and north aircraft velocity components, respectively; \(U_a \) is the true airspeed; \(\alpha, \beta, \theta, \phi, \) and \(\psi \) are the aircraft attack, sideslip, pitch, roll, and true heading angles, respectively; \(L \) is the distance separating the INS and gust probe along the aircraft’s center line; \(D = (1 + \tan^2 \alpha + \tan^2 \beta)^{-1/2} \); and \(\dot{\psi} = d\psi/dt \) and \(\dot{\theta} = d\theta/dt \); \(w_p \) is the aircraft vertical velocity.

Figure adapted from D.H. Lenschow and P. Spyers-Duran, NCAR/RAF Bulletin 23

Serial data from INS/GPS C-MIGITS III unit.
Analog data (5-port radome gust system, \(P_s \) and \(T_r \))
Analog-Serial Synchronization

![Graph showing pitching rate over time for Analog sensor and Serial C-MIGITS](image-url)
Ground Speed AOC vs. UCI
UCI Winds

1111119

WS, m s⁻¹

WD, °

WZ, m s⁻¹
Vertical Wind Critical Test

Rule of thumb: $\sigma_w/\sigma_{Vz} < 10\%$ is acceptable

WSZ(DPJ): 18% ; UWZ(AOC): 11% ; WZR(UCI): 4% ; WZF(UCI): 3% ;
Air-Sea Fluxes

\[\tau = -\rho (\overline{u\omega i} + \overline{v\omega j}) = \rho C_{d10} U_{10}^2 \]

\[H_s = \rho C_p \overline{w\theta} = \rho C_p C_H U_{10} (\Theta_s - \Theta_{10}) \]

\[E = \overline{w\rho_v} = C_E U_{10} (\rho_{vs} - \rho_{v10}) \]

\[H_l = h_{fg} E \]
High-Rate Data Status

High-Rate Data:
- **P**: Processed
- **PF**: Processed and fluxes estimated

<table>
<thead>
<tr>
<th>Instrument</th>
<th>November 11 - December 13 2011</th>
<th>UTC Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument</td>
<td>Flight</td>
<td></td>
</tr>
<tr>
<td>Total Temperature Thermistor</td>
<td>RF 01 RF 02 RF 03 RF 04 RF 05 RF 06 RF 07 RF 08 RF 09 RF 10 RF 11 RF 12</td>
<td></td>
</tr>
<tr>
<td>Rosemount Temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LI-COR 7200 CO2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LI-COR 7200 Humidity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mod. Krypton Hygrometer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pitch Angle Rate Sensor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radome Gust System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OXTS RT3003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OXTS Base Station</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RIEGL LMS Q240i</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heitronics IR SST</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend
- **UCI**: Operational
- **NOAA AOC**: Convection Mission
- **Some data**: Boundary Layer Mission
- **No data**: *NOAA DATA Gaps
- **P**: Processed
- **PF**: Processed and fluxes estimated
Means ($z \sim 60 \text{ m}, \Delta t = 180 \text{ s}$)
Turbulent Fluxes ($z \sim 60$ m, $\Delta t=180$ s)
Airborne Scanning LiDAR for wave mapping
Post-Experiment Riegl Boresighting and Wind Cals Flight 13 Jan 2012, Tampa, FL
Wave field example on 111204
Along North East Track
Wave Spectra

![Wave Spectra Graph]

- PSD, m2/Hz
- Freq, Hz

Lines:
- Blue: scan1
- Green: scan1
- Red: scan3
- Black Dashed: Freq3
Summary

- Turbulence instrumentation we installed on the NOAA P3 performed reasonably well as evidenced by the flux measurements capturing the suppressed to active MJO transition.
- Our vertical wind passes the pitching maneuver tests and is an improvement from the standard AOC’s 1-Hz data.
- High-rate data from AOC had dropouts and occasional data gaps due to new data system hickups.
- Wave measurements from the new lidar system yielded promising results though its point density is limited by the high speed of the P3.
- Finalize the data set especially the 3 flights with gaps to proceed with more in-depth analysis.