DYNAMO Aircraft Operations

Aircraft: NOAA WP-3D, "Kermit" N42RF

Flight hours: 105 science mission hours + 70 ferry hours

Aircraft operation base: Diego Garcia (7.3°S, 72.5°E)

Operation period: 45 days

Aircraft Science Team

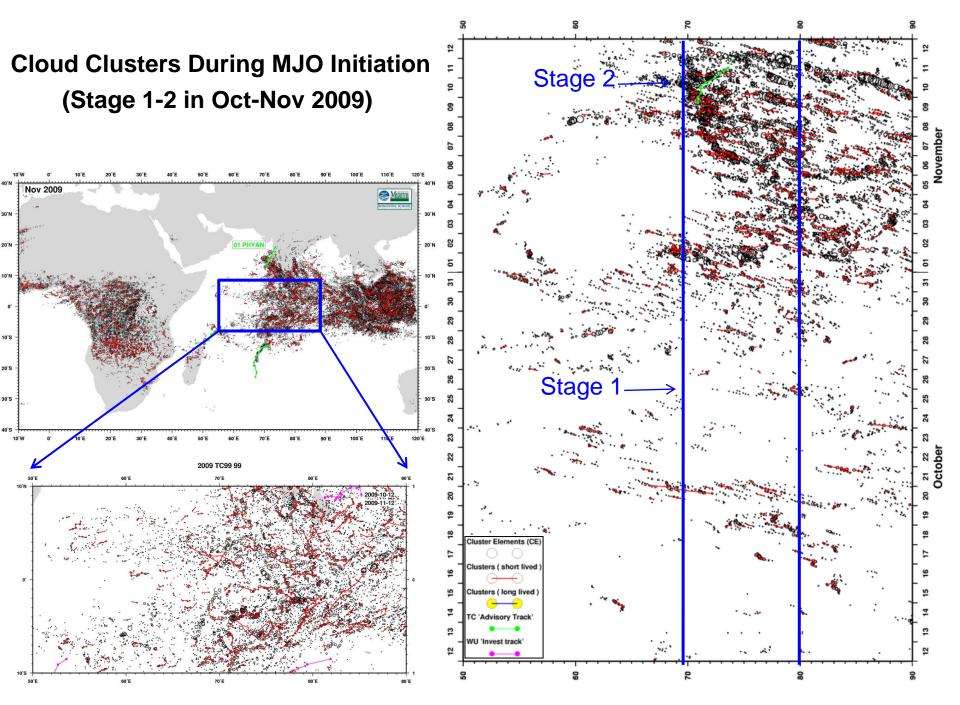
Coupled air-sea boundary layer processes (ONR, funded): Q. Wang, D. Khelif, S. Chen

Deep convection/MJO initiation (NOAA, TBD): S. Chen, D. Jorgensen, A. Vintzileos

Dropsonde boundary layer and convection study (NSF, TBD): Q. Wang, S. Chen

Aircraft Measurements Objectives

1) to obtain boundary layer, surface, and upper ocean measurements to address various issues associated with coupled air-sea processes in different cloud conditions and MJO phases.


2) to characterize deep convective processes and understand the complex feedback processes among surface forcing, cloud dynamics and thermodynamics, radiation, and environmental conditions in various phases of the MJO.

3) to extend point measurements on island and ships to a broader area near the DYNAMO region.

4) To obtain a suite of measurements suitable for model evaluation/validation as well as data assimilations.

Key Aircraft Instruments

Flight Level in situ	t Level <i>in situ</i> Navigational parameters			
Sensors:	Pressure and thermodynamic parameters			
	Mean winds and turbulence			
	High-rate T, q, CO ₂ perturbations			
	Cloud physics			
	Radiation			
Radars:	Lower fuselage C-band Doppler radar			
	Tail X-band Doppler radar			
Expendables:	GPS dropwindsonde atmospheric profiling system			
	Airborne eXpendable Bathythermographs (AXBT's)			
	Airborne eXpendable Conductivity Temperature and Depth			
	probes (AXCTD)			
Others:	Riegl LMS Q240i scanning lidar			
	Stepped Frequency Microwave Radiometer			
	Radiometric SST			

longitude

Flight level vertical stacks (FVS)

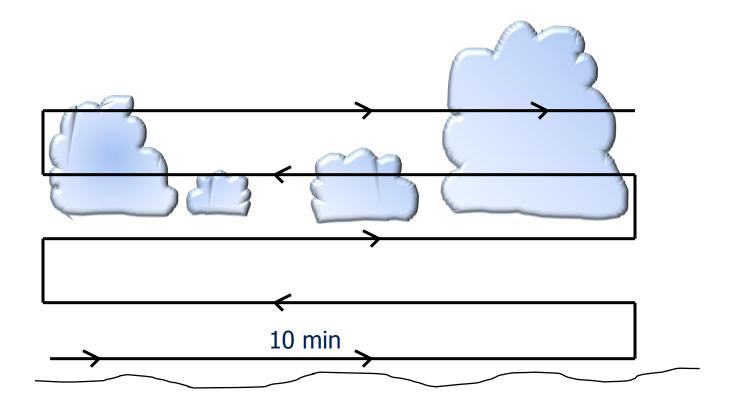


Fig. 2a Side view of flight level vertical stack (FVS) module for boundary layer turbulence gradient.

Flight level Cross-Section (FSC) profiles

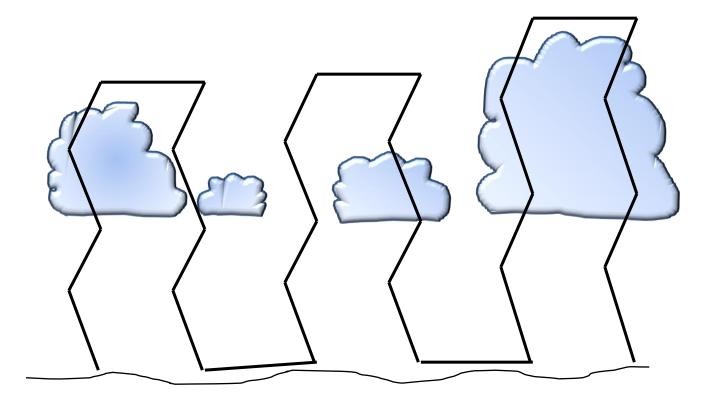


Fig. 2b Side view of flight level cross-section (FCS) profiling module.

Flight level Flux Mapping (FFM)

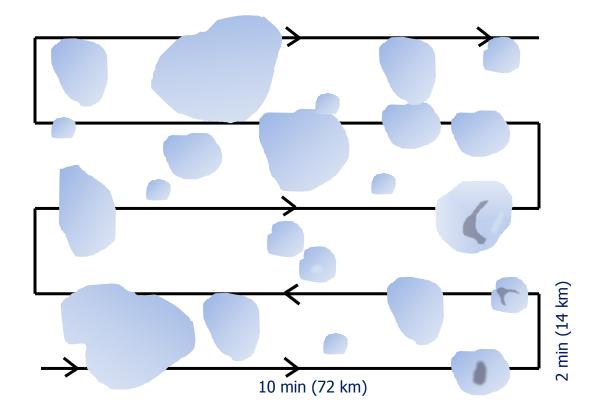


Fig. 2c Top view of flight level flux mapping (FFM) module. Depicted here includes 5 10-min legs (72 km), separated by 2-min (14 km) short legs. The total time needed for this module at a single level is 60 minutes. This module should be used at the lowest level (200') followed by a second one in the boundary layer.

Module for Radar Survey of Convective conditions (RSV)

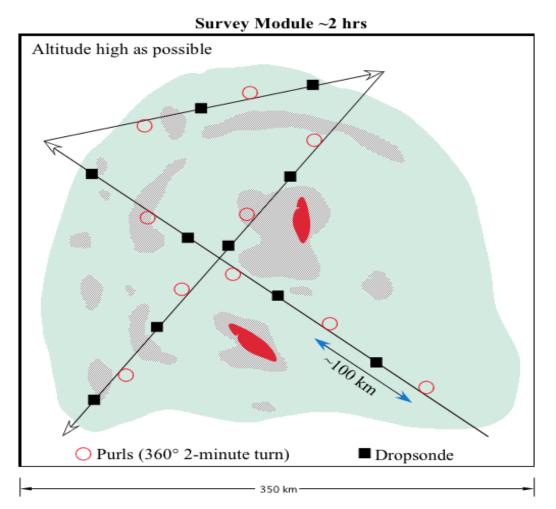


Fig. 3 "Survey" module to sample the larger scale aspects of the convective systems.

Module for convective elements (RCE)

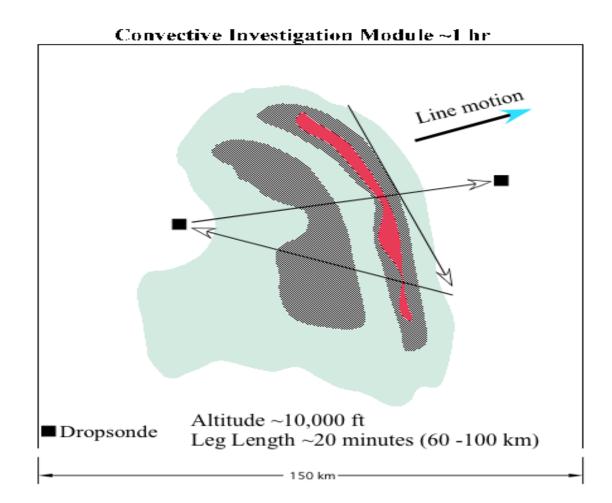


Fig. 4 The RCE module aims to investigate a particular convective element (e.g., linear feature) as shown above.

Dropsonde Area Survey (DAS) module

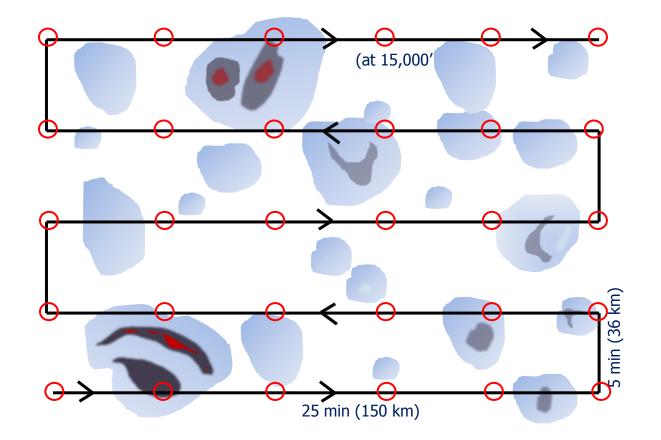


Fig. 6 Top view of gridded dropsonde area survey (DAS) module.

Dropsonde Convective Element module

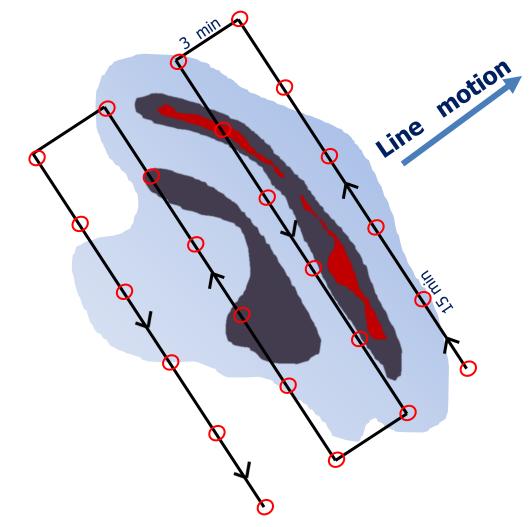
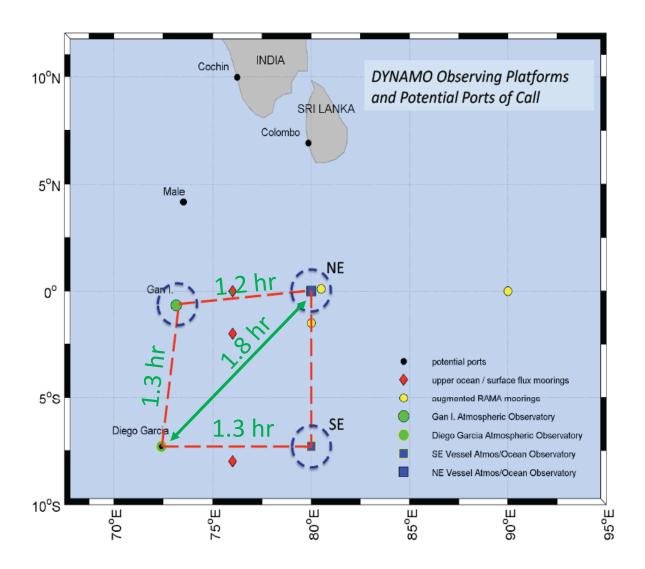


Fig. 5 DCE module at 19,000' altitude.


Issues to be resolved

- 1) P-3 coordination with other facilities/platforms
- Ships
- Gan radar supersite (Falcon a more logical choice for this?)
- Sounding array (extending sounding arrays to a larger scale to west of 70 E with dropsondes?)
- Science and operation coordination with Falcon ?
- Requirements from modeling community

2) P-3 operation support

- ONR is working on logistics for basing in DG.
- Dedicated forecaster?
- Satellite imagery products
- Current cloud and weather conditions from ships
- Further refinement of flight modules with input from AOC

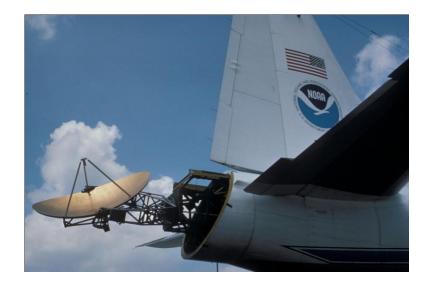
NOAA WP-3D and Other Facilities

•Extra slides

Aircraft and Modeling Group Collaboration

- dropsonde data
- aircraft in situ data
- aircraft radar data

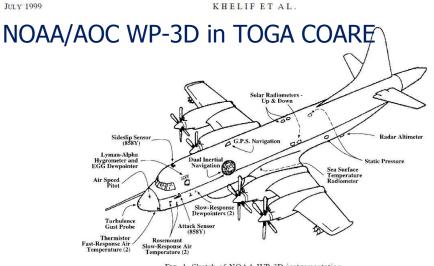
Flight Level Instruments

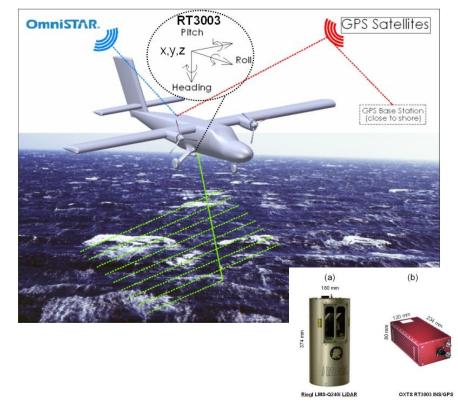

Basic WP-3D Instrumentation

Parameter	Instrument	Accuracy	Comments/Known Problems
Total Air Temperature	Rosemount Platinum Resistance	0.2° C	Wetting in high cloud water regions or precipitation (wet bulb effect)
CO ₂ Temperature	CO2 Radiometer modified by AOC engineers	0.5° C	Offset due to heating/cooling of window; can sense wet bulb in rain regions
Dew Point	General Eastern Cooled mirror	0.4° C dew 0.6° C frost	Wetting in high cloud water regions or precipitation; response time ~10 s
Position	GPS/Inertial Navigation	< 1 m ?	"Military accuracy" GPS
Horizontal Winds	Inertial/GPS Navigation and aircraft attitude	1 m s ⁻¹	Winds suspect in steep turns/TAS checks needed for dynamic Pressure measurements.
Vertical Winds	Inertial/GPS Navigation and aircraft attitude	0.5 m s ⁻¹	Accelerometer drift
Cloud Water Content	Johnson-Williams hot wire	0.20% from 0-6 g kg ⁻¹	Senses drops < 40 μm
Total Water Content	"King" Probe (PMS)	??	Presently uncalibrated
Hydrometeor Images	PMS 2-DP, 2-DC and FSSP	16 μm or 32 μm	PMS 'grey probes' and data system purchased for TOGA/COARE
Vertical Profiles	GPS Dropsondes	0.1C; 1m/s	Sensor wetting in rain/clouds?

Tail Radar Characteristics

Parameter	Tail Radar	
Scanning Method	Vertical about the aircraft's longitudinal axis; fore/aft alternate sweep methodology	
Wavelength	3.22 cm (X-band)	
Beamwidth:		
Steerable antenna:		
Horizontal	1.35°	
Vertical	1.90°	
CRPE flat plate:		
Horizontal	aft: 2.07°, fore: 2.04°	
Vertical	aft: 2.10°, fore: 2.10°	
Polarization (along sweep axis):		
Steerable antenna:	Linear vertical	
CRPE flat plate antenna:	Linear horizontal	
Sidelobes:		
Steerable antenna:		
Horizontal:	-23.0 dB	
Vertical:	-23.0 dB	
CRPE flat plate:		
Horizontal:	aft: -57.6 dB, fore: -55.6 dB	
Vertical:	aft: -41.5 dB, fore: -41.8 dB	
Gain:		
Steerable antenna	40.0 dB	
CRPE flat plate antenna	aft: 34.85 dB, fore: 35.9 dB	
Antenna Rotation Rate	Variable up to 10 RPM (60° s ⁻¹)	
Fore/Aft Tilt:		
Steerable antenna	Variable up to $\pm 25^{\circ}$	
CRPE flat plate antenna	aft: -19.48°, fore: 19.25°	
Pulse Repetition Frequency	Variable, 1600 s ⁻¹ – 3200 s ⁻¹	
Dual PRF ratios	3/2 and 4/3	
Pulses Averaged per Radial	Variable, 32 typical	
Pulse Width	0.5 µsec, 0.375 µsec, 0.25 µsec	
Gate Length	150 m	

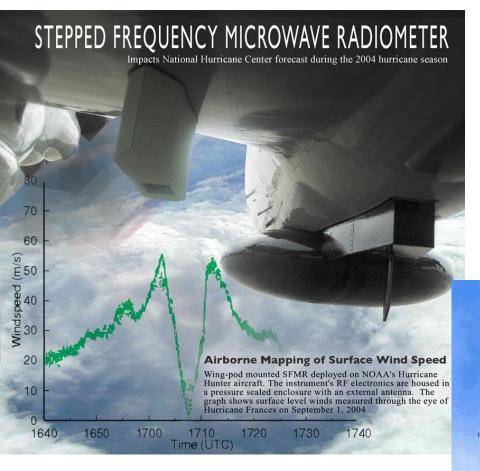


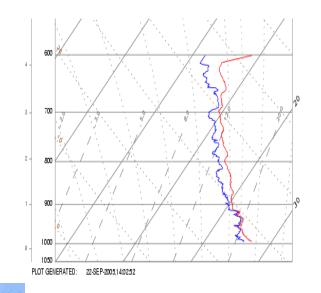

FIG. 1. Sketch of NOAA WP-3D instrumentation.

VOLUME 16

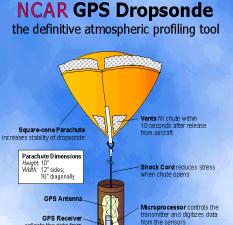
JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY

Instrumentation NPS/CIRPAS Twin Otter





UCI DURIP: Airborne Scanning LiDAR for 3-D wave mapping to be integrated on WP-3D for MJO DRI.


JULY 1999

Post-COARE instruments: SFMR, GPS dropsondes, turbulence, etc.

Che barb - 100 mis

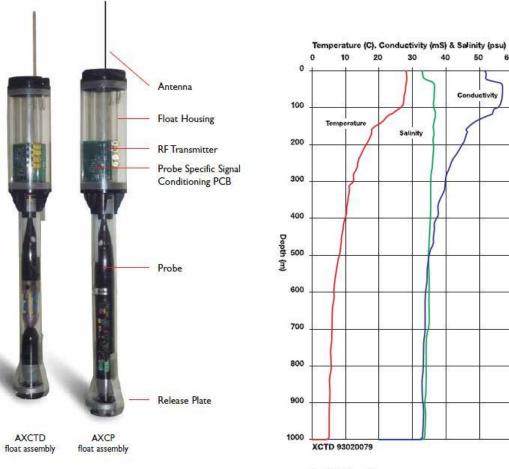
collects the data from GPS satellites used to calculate

Pressure sens

Humidity sensors

wind speed and direction

and temperature senso Sonde Dimensions Length: 16" Diameter: 2.75"


Weight: 0.86 lbs.

Radio Transmitter sends temperature, humidity, pressure, and GPS (wind) data to the aircraft every 0.5 seconds

Fall Speed ranges from 36 mph at 20,000 feet to 24 mph at sea level. A drop from 20,000 feet lasts 7 minutes

Post-COARE instruments: AXCTDs, AXCPs

An AXCTD profile

60

PROBE SPECIFICATIONS

PROBE	PARAMETER	DEPTH	ACCURACY	ACQUISITION SYSTEM
AXCTD	conductivity, temperature	1000 m	-0.035 mS/cm,-0.035°C	MK 12
AXSV	sound velocity	850 m	-0.025 m/sec	MK 12
AXCP	current velocity, temperature	1500 m	-1.0 cm/sec RMS,-0.2 °C	C MK IO