Humidity Estimates Using Simultaneous S- and K_a-band Radar Measurements

Scott Ellis
National Center for Atmospheric Research
Humidity Estimate: Background

• Gaseous attenuation at microwaves is due to mainly to oxygen and water vapor
 – Depends on gas concentrations
 – Depends on wavelength
• S-band is non-attenuating
• K_a-band is strongly attenuating
• Water vapor can be related to K_a-band attenuation estimates
• For Rayleigh scatterers the S and K_a-band reflectivity differences are due to liquid and gas attenuation at K_a-band
Background: S-PolKa

- Estimates of K_a-band gaseous attenuation can be obtained by comparing simultaneous S- and K_a-band reflectivity
 - Matched 1 deg beam widths
 - Matched 150 m range gates
Humidity Estimate: Method

- Obtain Ray Segment
- Check for Rayleigh scattering
- Compute K_a-band Gaseous Attenuation (dB km$^{-1}$)
- Compute Path-integrated Humidity
- Compute Layer-based Vertical Profile
Humidity Estimate: Obtain Ray Segment

- Select small 2-D patches of cloud or precipitation echo (10 to 20 radar gates)
- Each data patch (kernel) results in one estimate of mean attenuation (dB km$^{-1}$) and humidity (g m$^{-3}$)
Humidity Estimate: Obtain Ray Segment

- Select small 2-D patches of cloud or precipitation echo (10 to 20 radar gates)
- Each data patch (kernel) results in one estimate of mean attenuation (dB km$^{-1}$) and humidity (g m$^{-3}$)
Humidity Estimate: Obtain Ray Segment

\(K_a \)-band reflectivity (dBZ)

\(S \)-band reflectivity (dBZ)
Humidity Estimate: Obtain Ray Segment

K_a-band reflectivity (dBZ)

S-band reflectivity (dBZ)
Humidity Estimate: Obtain Ray Segment

K_a-band reflectivity (dBZ)

S-band reflectivity (dBZ)
Humidity Method: Error Sources

- $A_g = (\text{dBZ}_S - \text{dBZ}_{Ka})/L = \Delta Z/L$

- Error in gaseous attenuation, and thus humidity estimates are a function of ray segment length

- 1 g m^{-3} is between 5 and 10 percent error
 - Requires dBZ difference errors less than 0.5 dB and ray segment length > 15 km

- Humidity errors resulting from ΔZ errors of 0.5 and 1.0 dB as a function of L
Humidity Method: Error Sources

- Non Rayleigh scattering
 - Ground clutter
 - Point targets (birds aircraft)
 - Mie scattering at Ka-band (e.g. drops > 1 mm)
 - Bragg scattering at S-band
- Measurement noise (need to average 10 range gates for S-Ka-band pair)
- Attenuation by liquid
 - Within target echo
 - Intervening along ray path
- Calibration errors
- Ground clutter filter
- Criteria designed to keep reflectivity difference errors < 0.5 dB
Humidity Estimate: Compute Attenuation

- Compute mean gaseous attenuation (dB km\(^{-1}\)) of ray segments of length L
 \[A_g = (\text{dBZ}_S - \text{dBZ}_{Ka})/L = \Delta Z/L \]
Humidity Method: Estimate Humidity

- Microwave propagation model computes A_g for P, T and Humidity
- Run Liebe (1987) model many times varying T, P and WV (g m$^{-3}$)
- Compute polynomial fit of WV to attenuation

Results for RICO

$WV = 201.40A^3 - 209.60A^2 + 120.55A - 2.25$

Where WV is water vapor density (g m$^{-3}$) and A is gaseous attenuation (dB km$^{-1}$)
1. Plot midpoint of ray segments

2. Layer-based Profile

Typical resolution 0.25 to 0.5 km
Humidity Results: REFRACTT

S-band reflectivity (dBZ)

K_a-band reflectivity (dBZ)
Humidity Results: REFRACTT

Over KDNR
RMSD = 0.14 g m\(^{-3}\)
Humidity Results: REFRACTTT

+ Over KDNR

o North of S-PolKa

Layer-based estimate

Sounding data
Humidity Results: REFRACTT

Precipitable Water content from GPS

Low level humidity from refractive index measurements

Courtesy of John Braun, NCAR
Humidity Results: REFRACTT

- Surface station in moist air
 Layer-based estimate
 Sounding data
 Surface station in moist air

- Over KDNR
- North of S-PolKa
Humidity Results: RICO

RMSD = 0.85 g m$^{-3}$
Humidity Results: RICO

Layer-based estimate

Mean of sounding data using layer-based estimate resolution

Sounding data

+ radar retrieval – primary ray
x Radar retrieval – secondary ray

10 January, 2005

Water vapor density (g m⁻³)

Height (km)
Humidity Results: RICO

12 January, 2005

+ radar retrieval – primary ray
× Radar retrieval – secondary ray

RMSD = 0.75 g m⁻³

Mean of sounding data using layer-based estimate resolution

Layer-based estimate
Sounding data

Height (km)

Water vapor density (g m⁻³)
Discussion

• Method depends on availability of suitable echoes
 – Unfavorable conditions include
 • No echoes
 • Heavy rain on the radar
 • Stratiform cloud deck (no vertical profile)
 – Favorable conditions
 • Scattered cumulus
 • Tropical trade-wind cumulus
 • Continental convective conditions

• Provides additional moisture measurements
Discussion

- Not a real-time product
- Non-automated parts of procedure:
 - Data kernels hand edited
 - S-band Bragg scatter criteria
 - Liquid attenuation contamination criteria
 - Layer based profile
- Automated parts of procedure
 - Rayleigh scattering criteria
 - Ground clutter/point target
 - Spatial correlation of S- and K_α-band reflectivity over data kernel
- RSF trying to identify funding and staff to automate procedure – no guarantees
 - EOL engineering intern
 - CU senior engineering projects
 - CSU?
http://www.agu.org/journals/rs/papersinpress.shtml

Thanks!

Questions?
Motivation: LWC

- LWC estimates using only single wavelength radar reflectivity are difficult due to D^6 dependency
 - Drizzle/rain dominate reflectivity
 - Cloud drops dominate LWC

Photo by Bjorn Stevens

Khain et al. (2008)
LWC Estimate: Background

- Attenuation first proposed to retrieve LWC by Atlas (1954)
- Advantages
 - Attenuation directly related to LWC
 - Independent of DSD (and precip!)
- Difficulties
 - Requires two or more radars at different wavelengths
 - Beam matching
 - Straight forward with S-PolKa
 - Ambiguity between attenuation and Mie scattering effects
 - S-band dual-pol measurements
 - Measurement variance vs attenuation
 - Requires 2 km ray segments
LWC Estimate: Results

S-band reflectivity (dBZ)

Probe measured LWC
~ 0.05 – 0.1 g m⁻³

C-130

Retrieved LWC (g m⁻³)

LWC ~ 0.05 – 0.1 g m⁻³
LWC Estimate: Results

MVD (mm)

RES (mm)
LWC Estimate: Results

S-band dBZ 1.5 deg

Below cloud base

LWC (g m⁻³) 1.5 deg

Above cloud base

LWC (g m⁻³) 4.5 deg
LWC Estimate: Results

- DBZ
- VR m s⁻¹
- LWC, g m⁻¹
- MVD, mm
LWC Estimate: Background

dBZ Versus Retrieved LWC

Analogous to prescribing Z-LWC relationship using measured attenuation over ray paths of > 2 km
Humidity Method: Estimate Humidity

- Microwave propagation model computes A_g for P, T and Humidity
- Run Liebe (1987) model many times varying T, P and WV (g m$^{-3}$)
- Compute polynomial fit of WV to attenuation

$WV = 116.62A^3 - 162.02A^2 + 118.71A - 0.94$

Results for RICO

$WV = 201.40A^3 - 209.60A^2 + 120.55A - 2.25$

Where WV is water vapor density (g m$^{-3}$) and A is gaseous attenuation (dB km$^{-1}$)