Humidity Estimates Using Simultaneous S- and K_a-band Radar Measurements

Scott Ellis

National Center for Atmospheric Research

Humidity Estimate: Background

- Gaseous attenuation at microwaves is due to mainly to oxygen and water vapor
 - Depends on gas concentrations
 - Depends on wavelength
- S-band is non-attenuating
- K_a-band is strongly attenuating
- Water vapor can be related to K_a-band attenuation estimates
- For Rayleigh scatterers the S and K_a-band reflectivity differences are due to liquid and gas attenuation at K_a-band

Background: S-PolKa

- Estimates of K_a-band gaseous attenuation can be obtained by comparing simultaneous Sand K_a-band reflectivity
 - Matched 1 deg beam widths
 - Matched 150 m range gates

Humidity Estimate: Method

- Obtain Ray Segment
- Check for Rayleigh scattering
- Compute K_a-band Gaseous Attenuation (dB km⁻¹)
- Compute Path-integrated Humidity
- Compute Layer-based Vertical Profile

- Select small 2-D patches of cloud or precipitation echo (10 to 20 radar gates)
- Each data patch (kernel) results in one estimate of mean attenuation (dB km⁻¹) and humidity (g m⁻³)

- Select small 2-D patches of cloud or precipitation echo (10 to 20 radar gates)
- Each data patch (kernel) results in one estimate of mean attenuation (dB km⁻¹) and humidity (g m⁻³)

Humidity Method: Error Sources

- $A_g = (dBZ_S dBZ_{Ka})/L = \Delta Z/L$
- Error in gaseous attenuation, and thus humidity estimates are a function of ray segment length

• 1 g m⁻³ is between 5 and 10 percent error

- Requires dBZ difference errors less than 0.5 dB and ray segment length > 15 km

Humidity Method: Error Sources

- Non Rayleigh scattering
 - Ground clutter
 - Point targets (birds aircraft)
 - Mie scattering at K_a -band (e.g. drops > 1 mm)
 - Bragg scattering at S-band
- Measurement noise (need to average 10 range gates for S-K_a-band pair)
- Attenuation by liquid
 - Within target echo
 - Intervening along ray path
- Calibration errors
- Ground clutter filter
- Criteria designed to keep reflectivity difference errors < 0.5 dB

Humidity Estimate: Compute Attenuation

• Compute mean gaseous attenuation (dB km⁻¹) of ray segments of length L $-A_{\alpha} = (dBZ_{S} - dBZ_{Ka})/L = \Delta Z/L$

Humidity Method: Estimate Humidity

• Microwave 30 propagation model computes 25 Ind Infy Ann Liebe (1987) model many times rying T, P and ' (g m⁻³) **Results** for • Run Liebe (1987) **RICO** $= 201.40A^3 - 209.60A^2 + 120.55A - 2.25$ Where WV is water vapor density $(g m^{-3})$ and A is • Compute gaseous attenuation (dB km⁻¹) 0 polynomial fit of 0.5 0.1 0.2 0.40.3 0 Atmospheric Attenuation (dB km⁻¹), 1-way WV to attenuation

Humidity Method: Creating Vertical Humidity Profile

Range

- 1. Plot midpoint of ray segments
- 2. Layer-based Profile

Typical resolution 0.25 to 0.5 km

0

S-band reflectivity (dBZ)

K_a-band reflectivity (dBZ)

Precipitable Water content from

Low level humidity from refractive index measurements

Humidity Results: RICO

Humidity Results: RICO

Humidity Results: RICO

- Method depends on availability of suitable echoes
 - Unfavorable conditions include
 - No echoes
 - · Heavy rain on the radar
 - Stratiform cloud deck (no vertical profile)
 - Favorable conditions
 - Scattered cumulus
 - Tropical trade-wind cumulus
 - Continental convective conditions
- Provides additional moisture measurements

Discussion

- Not a real-time product
- Non-automated parts of procedure:
 - Data kernels hand edited
 - S-band Bragg scatter criteria
 - Liquid attenuation contamination criteria
 - Layer based profile
- Automated parts of procedure
 - Rayleigh scattering criteria
 - Ground clutter/point target
 - Spatial correlation of S- and K_a-band reflectivity over data kernel
- RSF trying to identify funding and staff to automate procedure no guarantees
 - EOL engineering intern
 - CU senior engineering projects
 - CSU?

Motivation: LWC

- LWC estimates using only single wavelength radar reflectivity are difficult due to D⁶ dependency
 - Drizzle/rain dominate reflectivity
 - Cloud drops dominate LWC

LWC Estimate: Background

- Attenuation first proposed to retrieve LWC by Atlas (1954)
- Advantages
 - Attenuation directly related to LWC
 - Independent of DSD (and precip!)
- Difficulties

- Requires two or more radars at different wavelengths
- Beam matching
 - Straight forward with S-PolKa
- Ambiguity between attenuation and Mie scattering effects
 - S-band dual-pol measurements
- Measurement variance vs attenuation
 - Requires 2 km ray segments

S-band dBZ 1.5 deg

S-band dBZ 4.5 deg

LWC Estimate: Background

dBZ Versus Retrieved LWC

Humidity Method: Estimate Humidity

- Microwave propagation model computes
- • Run Liebe (1987)

• Compute polynomial fit of WV to attenuation

