Ship-based Doppler Lidar Measurements

NOAA ESRL Chemical Sciences Division

Alan Brewer Sara Tucker Scott Sandberg Ann Weickmann Mike Hardesty

The shipborne High Resolution Doppler Lidar (HRDL)

- Solid state 2 micron transmitter
 - Invisible & Eyesafe
- High spatial and temporal resolution
 - 30 m along beam
 - 1/2 second
- Max range 3-8 km
- Range resolved line-of-sight wind speed and aerosol backscatter strength

- Housed in a 20 ft seatainer
- 6 Ship-based deployments
- Motion stabilized hemispheric scanner

The motion compensation system

- Stabilizes orientation and corrects for ship motion
- Essential for ship based measurements
- Differential GPS & 6 axis accelerometer
- 3 axis hemispherical scanner
- Orientation feedback and correction occurs at 40 hz
- Typical 0.5 degree precision

Typical operational mode :

- Continuous operation (24/7)
- Repeating scan sequence
- Automatic data analysis and display
- Post results in near real time to internal ship server and internet (when available).

A repeating 20 minute scan sequence

A repeating 20 minute scan sequence

Continuous operation during VOCALS-Rex 21 Oct – 30 Nov 2008

HRDL RV Brown - VOCALS 2008: Scan Type vs. Date and Time

Continuous data products: Vertical Profiles

Total of

0.6

Vertical velocity variance

Aerosol backscatter signal strength

Real time processed results are uploaded to web every 20 minutes

24 hour profiles of:

Horizontal wind speed & dir Backscatter intensity Vertical velocity variance

Wind Speed and Direction

Signel Strength

Vertical Velocity Vertence

Wind Speed and Direction

Signel Strength

Vertical Velocity Vertence

Complex, time-evolving flow patterns (such as colliding precipitation outflows) can be studied with repeating, multiple plane scans

- Combining scanning data & vertically staring data
- Spatial distribution and temporal evolution of:
 - Line-of-site velocity fields
 - Residual wind field
 - Resolvable divergence field
 - 2 micron backscatter signal strength
 - Aerosol field
 - Identification of different air masses

Precipitating Cumulus Outflow example : VOCALS-Rex Transit

Measurement capability combines

Continuous monitoring

- Vertical profiles
 - Horizontal wind fields
 - Vertical velocity variance turbulence / mixing strength
 - Aerosol distribution layering / mixing
- BL mixing heights
- Vertical velocity statistics

High temporal and spatial study of complex flow patterns

- Precipitation initiation convergence / uplift / vertical velocity
- Sub convective cloud dynamics & aerosol outflows

Combined measurements

- Scanning C-Band
- Vertically pointing W-Band
- In-situ aerosol properties