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DEEPWAVE Motivation:
Why are deep propagating GWs important?

« GWSs account for primary vertical energy & momentum transport at all levels
 GCM parameterizations of GWs are known to be seriously deficient
 The important GWs are not resolved by satellite measurements or GCMs

» Better GW parameterizations require improved understanding, coordinated
measurements and modeling studies



GW scale sensitivity and needs
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 New measurements are needed to identify and quantify deep GW dynamics
 Efforts are needed to calibrate satellite measurement capabilities



DEEPWAVE Approach:

« Perform comprehensive measurements at a location where these dynamics
have large responses and can be quantified with confidence

- desire sensitivity to several major GW sources

 Expand measurement capabilities to dramatically increase data accuracy
and vertical extent — spanning altitudes of ~0-100 km

* Bring additional U.S. and international resources to enhance the value to the
research community

* Include extensive forecasting and modeling activities for better understanding



Site selection focused on Austral Winter GW “Hot Spots”
(stronger responses, minimal SSW risk compared to N.H.)
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GW sources with strong stratospheric responses include S. Andes,
Antarctic Peninsula, New Zealand, and Tasmania

- S. Andes/AP (SAANGRIA) judged not feasible for NGV operations



DEEPWAVE "Region of Airborne Operations"” (RAO)
is the 29 largest SH GW hotspot on Earth

major GW sources include:

- topography (NZ, Tasmania, islands)
- circumpolar jet (Southern Ocean)
- frontal systems

New Zealand is a very good operational environment
with good ground-based instrument support
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Deep GW Propagation over New Zealand

- high frequency of multi-day strong forcing events
- expect ~10 (minimum 3, maximum ~15) events
with U > 15 ms-in 6-week campaign
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*Mountain wave propagation to high altitudes is common in S. Hemisphere

« Strong flows over New Zealand and Tasmania are prominent GW sources



GWs at ~41 km over New Zealand & the Southern Ocean
-rich sources of large-amplitude GWs
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Austral Winter also provides a stronger zonal jet and strong
GW propagation channel enabling GWs to penetrate

to very high altitudes

-in an ideal natural laboratory

DEEPWAVE research focus
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New DEEPWAVE instruments will provide sensitivity to the
dominant GW scales relevant to quantifying GW influences and
parameterization needs
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DEEPWAVE Field Campaign and Measurement Plans
- field program 5 June — 21 July 2014

NSF/NCAR Gulfstream V (NGV)
with new lidars and MTM
measuring from ~15 - 100 km

DLR Falcon with Doppler lidar
measuring from ~0 — 11 km
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DEEPWAVE Instrumentation
- all demonstrated in Feb. 2013 NGV test flights

In situ instruments Winds, temperature, O, aerosol, humidity Flight level Along-track hi-res GW &
(gust probe, GPS..) * 1-5 Hz (Ax~50-250 m) (5-13 km) turbulence data
Dropsondes Wind & temperature profiles Below aircraft Flow environment, GW

* Az~100 m (0-13 km) structure below flight level
Microwave Temperature profiles ~5-20 km GW structure above &
Temperature Profiler ++1-2 K, Az~0.7-3 km, 10-15 s integration below GV
(MTP) (Ax~2-4 km)
Rayleigh lidar Temperature profiles T~30-50+ km GW structure

*+2-8 K, Az~2 km, 20-s integration (Ax~4 km) GWe-induced PSCs
Sodium (Na) Na densities, temperature ~15-30 km GW structure
resonance lidar *+1-3 K, Az~3-5 km, 20-s int. (Ax~4 km) ~84-96 km

vertical wind
*+1-3 m/s, Az~3-5 km, 20-s int. (Ax~5 km)

Mesospheric All sky OH airglow and temperature ~87 km 2D map of GW and

Temperature Mapper <2 K, 2-s integration/TDI (Ax~1 km) instability structures,

(MTM) propagation directions
Existing Facility Instruments New Facility instruments recently

developed for DEEPWAVE



DEEPWAVE PIs have developed 3 new NGV instruments
to extend DEEPWAVE measurements from ~0 to 100 km

- Rayleigh lidar - T and T'(z,t) ~30 — 60 km
- Naresonance lidar - w' and T'(z,t) ~15-30 km and ~80-100 km)
- Mesosphere Temperature Mapper (MTM) - T and T'(x,y,t) ~87 km

Rayleigh and Na lidars MTM (Mike Taylor, USU)
(Biff Williams, GATS) ,,

MTM T' imag¥§
~120x80 km

lidar w', T' profiles
~80-100 km alt.
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NGV UV and sodium lidar measurements

UV lidar: ~5 W pulsed

densities (temperatures) ~30-60 km

Na lidar: ~14 W CW, pulsed/32-channel scanned

vert. winds, temps.
~15 — 30 km,
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NGV MTM measurements ~87 km OH airglow

- continuous horizontal map of temperature: Ax, Ay ~0.5 km
(~120 km along track, ~80 km cross track)

- temporal span ~10 min to track evolution of small-scale features

MTM temperatures MTM along-track mapping
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Example MTM OH Temperature Movie
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DEEPWAVE measurements will also be augmented through DLR
participation with an airborne Doppler lidar, in-situ measurements,
dropsondes, balloon soundings, and a ground-based Na lidar

DLR Doppler lidar and
dropsondes will yield:

- mean winds, GW structure,
amplitudes, and momentum fluxes
~0to 11 km

DLR ground-based Na lidar
will yield:

- Rayleigh temperatures ~5-70 km
- radial winds ~80-105 km,

iIf Na resonance capabilities
are in place




DEEPWAVE ground-based measurement sites

Invercargill |




DEEPWAVE ground-based measurements

Birdling's Flat
- meteor radar (J. Baggaley) - horizontal winds ~80-100 km (auto.)
Haast
- portable sounding system, DLR/NCAR??? (manned)
Hokitika
- NCAR ISS - balloons to ~30 km; 449 MHz BLR, winds to ~5+ km (manned)
Lauder
- AMTM (M. Taylor) - GW OH structure, T(x,y,t) at ~87 km (auto.)
- Na lidar, (B. Kaifler) - T(z,t) to ~30-100 km, U,(z,t) ~80-100 km, one comp.
(manned)
- DLR balloons (A. Dornbrack) (manned)
- Airglow imager (S. Smith) - GW airglow structures, ~87-95 km, ~300 km (auto.)
Mt. John
- airglow imager (S. Smith) - GW airglow structures, ~87-95 km, ~300 km (auto.)
- FPI (G. Hernandez) ??? (auto.)
Other balloon soundings to ~30 km at various sites
- NZ — Invercargill, Wellington??, Aukland?? (other per.)
- Australia — Kingston, Aukland Is., Macquarie Is. (other per.)
AAD (Australia)
- Hobart, TAS — Rayleigh lidar, sondes (other per.)
- Davis, Ant. (68.6°S, Australia) - Antarctic radars, lidar, airglow (other per.)



DEEPWAVE and correlative measurement capabilities
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Forecasting and modeling support for DEEPWAVE

NOGAPS-ALPHA global (S. Eckermann, NRL)
- data assimilation, forecasting

COAMPS deep nested mesoscale (J. Doyle, NRL)
- data assimilation, forecasting, predictability

ECMWEF forecasts (A. Dornbrack, DLR)
- support for flight planning

NIWA forecasts (M. Uddstrom, NIWA)
- support for flight planning and data analyses

WRF (R. Smith, Yale, and A. D6rnbrack, DLR)
- orographic gravity wave forcing, lower altitudes

Finite-Volume regional (GATS, D. Fritts)
- compressible/anelastic, deep (~0-300 km) GW wave
responses, interactions & instabilities

Spectral fine scale (GATS, D. Fritts)
- GW interactions, instabilities, and turbulence



DEEPWAVE Flight Forecasting
- successful "Dry Run" exercise 5-15 Aug. 2013
- major contributors — NOGAPS, COAMPS, ECMWF

New Zealand Flight Tasmania Flight S. Ocean Flight
8 August 2013 10 August 2013 15 August 2013
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