Fate of Mountain Waves in the Stratosphere: A Spectral Approach

Ron Smith, Chris Kruse, (Yale University)

Mt. Cook South Island New Zealand

Support from NSF-AGS-1338655

Outline

- Theoretical expectations
 - Scorer profiles
 - Broad spectra terrain
 - Wave measurements
 - Non-hydrostatic effects
- DEEPWAVE analysis
 - Aircraft data
 - WRF model results
 - Fate of waves in the stratosphere

Generic Deepwave Sounding

Gravity Wave Spectral Variances

- Mountainstrageooststraatinkindisplanente $\eta(x)$
- Fourier Transform $\hat{\eta}(k) = \int_{-\infty}^{\infty} \eta(x) \exp(-ikx) dx$
- $Var(\eta) = \int_{-\infty}^{\infty} \eta^{2}(x) dx = \left(\frac{1}{2\pi}\right) \int_{-\infty}^{\infty} \hat{\eta}(k) \hat{\eta}(k)^{*} dk$ From hydrostatic mountain wave theory From hydrostatic mountain wave theory 1. 1. $Var(w) = \int_{-\infty}^{\infty} w^{2}(x) dx = \left(\frac{U^{2}}{2\pi}\right) \int_{-\infty}^{\infty} k^{2} \hat{\eta}(k) \hat{\eta}(k)^{*} dk$ 22. $Cov(u, w) = \int_{-\infty}^{\infty} u(x)w(x) dx = -\left(\frac{NU}{2\pi}\right) \int_{-\infty}^{\infty} |k| \hat{\eta}(k) \hat{\eta}(k)^{*} dk$ Note: P-power and T-power are similar to u-power (3) 3. $Var(u) = \int_{-\infty}^{\infty} u^{2}(x) dx = \left(\frac{N}{2\pi}\right) \int_{-\infty}^{\infty} \hat{\eta}(k) \hat{\eta}(k)^{*} dk$ Weights are unimportant is pectrum is narrow, but importal Pifet Representation for the power due similar to u-power (3) Weights are unimportant if coefficient to u-power (3)

Weights are unimportant if spectrum is narrow, but important if the spectrum is broad .

Monochromatic Wave (blue line: typical buoyancy cut-off)

Ideal Rough hill (blue line: typical buoyancy cut-off)

New Zealand transect, Mt. Cook (blue line: typical buoyancy cut-off)

For terrain with volume and roughness (hydrostatic results)

- Variance spectra are broad and varied
- Volume mode dominates the u-power
- Roughness mode dominates the w-power
- Both modes contribute to MF
 - Volume mode: large u' and small w'
 - Roughness mode: small u' and large w'

Measuring GWs and MFs

- T' measurements mostly see the Volume mode
 - Passive IR (e.g. AIRS)
 - Rayleigh LIDAR
- U' measurements mostly see the Volume mode
 - Ascending balloons
 - VHF Doppler radar
 - Constant pressure balloons
- W' cannot be inferred from T' and U' as polarization relations do not apply to broad spectra. Can't get MF.
- Aircraft can directly observe U' and W'

Non-hydrostatic mountain waves near the buoyancy cut-off

Short waves in the stratosphere

- Wavelengths near 10km may be found in the stratosphere over rough terrain due to their slow decay or leakage.
- They will have strong w-power but little upower or MF
- Wavelengths near 5km may be generated by rough terrain but will not reach the stratosphere due to evanescence.

DEEPWAVE GV legs over New Zealand

- Observing period: SH Winter: June/July 2014
- Total (26 flights, 180 hours)
- Over New Zealand (97 legs; 49.1 hours)
- Over Ocean (157 legs; 84.3 hours)
- Altitude: mostly 12.1km
- Typical leg length: 350km
- Variables measured: u,v,w,p,T
- Publications
 - Smith et al. 2016, J. Atmos. Sci.
 - Smith and Kruse, 2017, J. Atmos. Sci.

NGV Legs: mostly at z=12.1km

NGV Legs over New Zealand (mostly at z=12.1km)

Mt RF05: 9 Legs Vertical displacement

Flight level Flux calculations

The fluxes are computed from

- $MFx = \bar{\rho} < u'w' >$
- $MFy = \bar{\rho} < v'w' >$
- $EFz = \langle p'w' \rangle$
- $EFx = \langle p'u' \rangle$
- $EFy = \langle p'v' \rangle$
- $eff_{AM} \equiv -(U^*MFX+V^*MFY)(Ediassen_Rappa)$
 - $1000 = (u'^2 + v'^2)/(U^2 + V^2)$

Vertical Energy Flux: all Deepwave GV flights

Vertical Energy flux for 14 NZ flights

Zonal Momentum Flux for 14 NZ flights

Comparing Energy and Momentum Fluxes EFz versus EFzM

Implies u' and p' are proportional

GV Aircraft Mountain Wave Spectra

Blue line is the buoyancy cut-off

DEEPWWAWE cross-terrain flight statistics

Valume Whate: ; $Rough Rough Rough Mode: \lambda < 60 km$

TABLE 2. Volume and roughness contributions to 92 DEEPWAVE aircraft leg variances (m² s⁻²).

	Volume	Roughness	Total
w power	0.02	0.41	0.45
MFx	-0.030	-0.030	-0.070
<i>u</i> power	7.4	1.9	10.5

WRF Spectra for RF days during Deepwave

12Hour averages

WRF Spectra for RF days

RF09 03 UTC on 25 June

WRF Spectra for RF days

RF12 09 UTC 30 June

RF16 07 UTC 4 July

2km WRF Simulation: 3-day wave event; z=12km

Red Redue Rough Messel Mode 60km Blue BIMelume Mode 60km Black Black at Total

DEEPWAVE Mountain Waves Spectral Categories

• **Respire Model:** $\lambda = 8 \text{ to } 15 \text{ km}$

-NORE THE DURDER NOT PETER DATE - NOR PETER DURDER TO STATIC

-Largego-power, Wettlelitte wepower OF

•• **RBogightsesso de II**: $\lambda = 15 \ to \ 60 \ km$

-Nederarrhydrydtastatic

- -takgeso worker shall shertific antific antwer power
- -talgestept Memonthmy Flux

• Volume Mede: $\lambda = 60 \text{ to } 300 \text{ km}$

- Hydrostatic
- Large u-power, P-power and T-power
 Large u-power, P-power and T-power
 Small but significant w-power
 Small but significant w-power
 Significant Momentum Flux
 Significant Momentum Flux

Fate of Mountain Waves in the Stratosphere: A spectral approach

- Questions
 - How do the broad spectrum waves, observed by aircraft at z=12m, propagate and break down in the stratosphere?
- Method
 - Split spectrum into long and short propagating waves with equal MFs (L>60km and L<60km)
 - Project upwards using the hydrostatic assumption and constant MF
 - Use a generic Deepwave sounding

Generic Deepwave Sounding

Group Velocity and Travel Time

$$Cg = kU^2/N$$

$$Time(z) = \int_0^z \frac{dz}{Cg}$$

Idealized WRF simulated 12 hour wave event with rough terrain

No shear

100

50 40

30

20 10

0

-10

-20

-40 -50 -60 -70

-80 -90 -100

> 100 90 80

70

60 50

40

30 20

10

0 -10

-20

-30

-40

-50 -60

-70

-80 -90

-100

Reversible deceleration and Wavenumber Vector Rotation

See next talk by Chris.

Non-linearity Ratio and Wave Breaking

Properties of Long and Short Hydrostatic Mountain Waves (i.e. 200 and 25km)

Properties of the volume mode

- 1. Wavelengths from 60 to 300km
- 2. Carries half of the MF
- 3. Large u-power, small w-power
- 4. Detectable with T' and U'
- 5. Likely to break in the valve layer
- 6. Slow group velocity
 - a. Large time delay
 - b. Large refraction
 - c. Large reversible deceleration
- 7. Explicitly resolved in new GCMs

Properties of the Roughness Mode

- 1. Wavelengths from 15 to 60km
- 2. Carries half of the MF
- 3. Small u-power, large w-power
- 4. Not seen with T' and U' instruments
- 5. Resistant to breaking until
 - a. High altitude
 - b. Impact of the volume mode; flow stagnation or turbulence
- 6. Fast group velocity
 - a. Little time delay
 - b. Little refraction
 - c. Little reversible deceleration
- 7. Must be parametrized; easier to do

Implications for GWD schemes

- If the longer waves can now be explicitly resolved in global models, only the shorter waves need to be parametrized.
- The short waves have:
 - A narrower spectra
 - Faster group velocity
 - Little time delay
 - Little refraction
 - Little reversible deceleration
 - They are invisible to T' and U' sensors
- This may not be the right time to "improve" GWD schemes to include delay, refraction and reversible deceleration.
- Challenge: How to predict and verify short wave generation and dissipation?

The End

Typical assumptions in GWD parametrization

- 1. Instantaneous propagation
- 2. Neglect Stokes drift (irreversible deceleration)
- 3. Vertical propagation (no refraction)
- 4. WKB; no reflection
- 5. Monochromatic
- 6. Saturation hypothesis
- 7. No Gray region (no waves resolved, all parametrized)
- 8. Launching amplitude related to terrain roughness