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Introduction

> 28 Jul case excellent for studying transient wave forcing 
> Unfortunately occurred after end of IOPs…so no flight data 
> During examination of WRF simulations, we found some interesting 

features…
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WRF Model Setup

> Real configuration 
> WRF 3.8 
> ∆x = ∆y = 18, 6, 2 km 
> 108 vertical levels 
> Model top ~ 0.5 hPa
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Introduction

> Waves oriented at an angle to 
the topography 

> Persist for ~15 hr
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Vertical Velocity (z = 15 km)
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Possibility #1

> Waves are due to the lee-side ridges and valleys

5



Johnathan Metz Slide

Terrain Configuration
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“No Lee Ridges”
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> Not due to lee side ridges 
> Waves are more apparent 
> So what is the cause?

Vertical Velocity (z = 15 km)
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Possibility #1
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> Waves are due to the lee-side ridges and valleys
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Possibility #1
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> Waves are due to the lee-side ridges and valleys
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Possibility #1
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Possibility #2

> Waves are due to the lee-side ridges and valleys
> Waves are trailing waves à la Jiang et. al. (2013)
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Lateral Shear

> Jiang et. al (2013) 
demonstrate the formation 
of transverse waves in the 
presence of large lateral 
shear
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Jiang et. al. (2013)
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Lateral Shear

> Jiang et. al (2013) 
demonstrate the formation 
of transverse waves in the 
presence of large lateral 
shear
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Jiang et. al. (2013)
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Jiang et. al. (2013)
of the negative lateral shear of the westerlies (i.e.,
›U/›y, 0) and the zonal wavenumber becomes slightly
smaller, presumably from (6), because of accumulating
effects of wind gradients in the zonal direction. In gen-
eral, shorter waves (i.e., lx , 300 km) propagate faster
in the vertical with little southward bending. This is es-
pecially true for the packets with l0 5 0, whose ray paths
are nearly vertical. Longer waves (i.e., lx 5 400 and
600 km) propagate upward more slowly. The slow up-
ward propagation allows for a greater accumulation of
lateral wavenumber refraction via (7), which in turn al-
lows wave groups to propagate farther south in the
stratosphere and mesosphere, via (3). It is noteworthy
that, even for l0 5 0, the rays of longer waves (i.e., lx ;
600 km or longer) exhibit substantially more southward
refraction associated with the increase of the meridional
wavenumber along each ray and slower vertical group
velocity. In summary, the ray path calculation suggests
that the northwest–southeast-oriented waves over Drake
Passage are likely one branch of the diverging three-
dimensional ‘‘ship’’ waves from Patagonia (Smith 1980),
while the other branch is largely absorbed by critical
levels to the north of Patagonia. The southward transfer
of wave momentum flux is enhanced by lateral wave

refraction associated with the strong meridional shear of
zonal winds aloft. The stratospheric momentum flux
maximum right above the Patagonian peaks is associated
with relatively short waves (i.e., lx ; 300 km or shorter).
The wavelength dependence of the southward ray group
propagation is consistent with the observed and simulated
increase of wave lengths aloft with distance away from the
wave source (i.e., Patagonia).
Finally, we briefly discuss the sensitivity of the ray

path corresponding to k05 l05 2p/400 km21 generated
by flow over Patagonia to the Coriolis parameter,
buoyancy frequency, vertical wind shear, and meridio-
nal winds. Although the spatial variation of the buoy-
ancy frequency and Coriolis parameter appears in (3)–
(8), their impact on wave refraction is rather in-
significant over the parameters examined here (Fig. 14).
This is consistent with Dunkerton (1984), who calcu-
lated ray paths of IGWs with an analytical zonal jet
profile similar to the mean profile shown in Fig. 11b.
According to (3), the squared ratio of the Coriolis pa-
rameter and the wave intrinsic frequency, f 2/v2, pro-
vides a useful measure of the importance of the Coriolis
parameter in wave refraction. We can define a wave
Rossby number squared, R2

w 5v2/f 2, which reduces to

FIG. 13. (a) Ray paths in the y–z plane and (b) horizontal wavenumbers (k, l) along each ray path for four pairs of
wave packets with k0 5 2p/100, 2p/200, 2p/400, and 2p/600 km21 and l0 5 0 and k0, respectively. In (b) the k (solid)
and l (dashed) curve are shown in the same color as in (a) for each wave packet.
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Lateral Shear
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Meridional CS of Zonal Wind

Jiang et. al. (2013)
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> Just one problem… 
> We don’t have much lateral 

shear

(North ↑)Horizontal Wind Vectors and Speed
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Horizontal Wind Profile
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Horizontal Wind Vectors and Wind Speed(z = 10 km) (z = 15 km)
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Possibility #2
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> Waves are due to the lee-side ridges and valleys
> Waves are trailing waves à la Jiang et. al. (2014)
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Possibility #2
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> Waves are due to the lee-side ridges and valleys
> Waves are trailing waves à la Jiang et. al. (2014)
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Possibility #2
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Possibility #3

> Waves are due to the lee-side ridges and valleys
> Waves are trailing waves à la Jiang et. al. (2014)
> Waves are one half of a ship wave pattern, with the other half 

destroyed by a directional critical level à la Doyle and Jiang (2006)
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Vertical Wind Profile
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Directional Critical Level?
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?

Doyle and Jiang (2006)

Vertical Velocity (z = 15 km)
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WRF Idealized Configuration
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`

Idealized Static Stability Real & Idealized Wind Profiles
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Idealized Terrain Configuration
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> Five peaks on top of an 
isolated ridge

Terrain Profile
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Ship Waves
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No Directional Shear Directional Shear

(z = 15 km, t = 3 hr)
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Ship Waves

> Problem: 
> Waves are transient 
> Disappear almost 

completely by 10 hr

18

(z = 15 km, t = 10 hr)

Vertical Velocity
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Possibility #3
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Possibility #3

> Waves are due to the lee-side ridges and valleys
> Waves are trailing waves à la Jiang et. al. (2014)
> Waves are one half of a ship wave pattern, with the other half 

destroyed by a directional critical level à la Doyle and Jiang (2006)
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Possibility #3

> Waves are due to the lee-side ridges and valleys
> Waves are trailing waves à la Jiang et. al. (2014)
> Waves are one half of a ship wave pattern, with the other half 

destroyed by a directional critical level à la Doyle and Jiang (2006)
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> Waves are due to the lee-side ridges and valleys
> Waves are trailing waves à la Jiang et. al. (2014)
> Waves are one half of a ship wave pattern, with the other half 

destroyed by a directional critical level à la Doyle and Jiang (2006)
> Horizontal variations in the wind field are important to the 

formation of the waves (through some as yet unexplained 
mechanism)
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Possibility #4
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Horizontally Heterogeneous Winds
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Horizontally Heterogeneous Winds
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Horizontally Heterogeneous Winds
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> We get the waves! 
> Wind is essentially steady and 

non-divergent 
> Therefore, something about 

the inhomogeneities in this 
wind field helps generate the 
waves

Vertical Velocity

(z = 15 km, t = 10 hr)
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Some Notes…

> These waves are fairly low (~15 km) 
> They appear in regions of little lateral shear 
> Previous dynamical explanations require: 

> Either directional critical levels… 
> …or… 
> Large lateral shear 

> Neither of which are present in this case
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A Long Time Ago, On A Level Down Down Low
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Vertical Velocity> Low-level trapped waves 
oriented SW-NE appear in the 
real simulations 

> However, here the transverse 
waves also appear 

> Is wave interference present? 
> Are the SW-NE waves trapped, 

while the N-S waves can 
propagate?

(z = 3 km, t = 1.5 hr)
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A Long Time Ago, On A Level Down Down Low
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Vertical Velocity> Low-level trapped waves 
oriented SW-NE appear in the 
real simulations 

> However, here the transverse 
waves also appear 

> Is wave interference present? 
> Are the SW-NE waves trapped, 

while the N-S waves can 
propagate?

(z = 3 km, t = 1.5 hr)
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Conclusions

> Horizontal inhomogeneities appear to be important 
> However, none of the existing dynamical explanations are 

particularly well suited to explain this
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