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Primary Research Questions: 
1. How do initially linear mountain waves (MWs) 

propagate, breakdown, and influence their 
environment in a MW event?

– Influences of vertical shear? Scale?

2. How important is reversible GWD by MWs?

3. In what ways might GWD parameterizations be 
improved?



MF, GWD, and ΔU
• Time Integrated Gravity Wave Drag per unit mass (GWD) gives 

the mean flow reduction:

Considering models periodic in x! 



Reversible and Irreversible ΔU
• In MW events, MWs interact with their environment 

both reversibly and irreversibly
• Reversible (Non-Dissipative) ΔU = ΔUrev: 

– Mean flow reduction that occurs as MWs propagate into a 
previously undisturbed flow

– If MW forcing finite in time and MWs do not dissipate, MWs 
return ambient flow back as they propagate out of the 
layer; hence, this interaction is reversible

• Irreversible (Dissipative) ΔU = ΔUirr: 
– Mean flow reduction that occurs as MWs dissipate/break, 

which irreversibly alters the mean flow



Tools
1. Non-Linear Model: WRF

– Resolves waves and their non-linear breakdown
– Periodic domain allows diagnosis of total ΔU = ΔUrev + ΔUirr

2. Linear Model: Fourier Ray (Broutman et al. 2002)
– Spectral, quasi-transient, non-coupled/steady background
– Allows diagnosis of reversible ΔU = ΔUrev 

3. Saturation Parameterization: Lindzen Type (Lindzen 1981, 
McFarlane 1987)

– Monochromatic, instantaneous propagation, waves not allowed 
to reach overturning amplitude (wave saturation)

– Gives estimate of irreversible GWD, ΔUirr in most coarse models

WRF Fourier Ray Param



Linear Fourier Ray Model
• Compute ray solution in Fourier space, then invert

• Terrain, h, provides scales and z = 0 amplitudes
• Wave action conservation and density modify these amplitudes in 

altitude
• Quasi-Transient: 

– cp = 0 for all scales
– Transience due to Surface Forcing, Fsfc, which takes into account cgz spectrum and 

arbitrary cross-barrier flow function, U0(t)
• Evanescent, reflected waves neglected
• Waves NOT coupled to ambient flow

Eckermann et al. 2015



Idealized Terrain

• k = π/d, d = 100 km

• hm: max terrain height
– hm = 50 m, 500 m

• Compact Terrain: 
results in a broad(-ish) 
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Wind Profiles

• Upper Shear: Uz0

• Ambient Wind Reduction: δU
• Surface Wind: U0 = 30 m/s

No Shear: Uzo = 0, δU = 0 m/s 
Positive Shear: Uzo = 1 m/s/km δU = 0 m/s
Negative Shear: Uzo = 1 m/s/km δU = 30 m/s
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Domains, Event Forcing
• Setup

– 2-D
– Horizontally Periodic
– Constant N = 0.02 s-1

– f = 0
– Inviscid

• MW Event Forcing (12 hr)
– WRF: Wind in lowest 5 km uniformly 

accelerated from zero to desired profile 
in 20 minutes, allowed to evolve for 12 
hours, then decelerated back to zero

– FR, GWD Parameterization: Same 
surface-level winds as WRF
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WRF Fourier Ray

Damping

Linear Mountain Wave Evolution

No Shear, hm = 50 m



WRF Fourier Ray

Damping

Linear Mountain Wave Evolution

No Shear, hm = 50 m



Linear Mountain Wave Evolution
WRF Fourier Ray

Damping

No Shear, hm = 50 m



Linear Mountain Wave Evolution
WRF Fourier Ray

Damping

No Shear, hm = 50 m



• MW generation produces non-dissipative MF gradient initially
• Spectrum and cgz dispersion spread MF profiles vertically in time

– Long waves propagate up slowly, short waves quickly

WRF Fourier Ray

Wave Scales, Initial MF Evolution

MF Spectrum

No Shear, hm = 50 m



• MW generation produces non-dissipative MF gradient initially
• Spectrum and cgz dispersion spread MF profiles vertically in time

– Long waves propagate up slowly, short waves quickly

WRF Fourier Ray

Wave Scales, Initial MF Evolution

MF Spectrum

Fast Short Waves

Slow Long Waves

No Shear, hm = 50 m



• MF maximum associated low-level deceleration at end of event in 
WRF
– Low-level wave field suddenly travelling upstream (cp≈-30m/s)
– Termed “travelling wave MF maximum” here
– Physics of this feature not fully understood yet
– Not present in FR solutions because of cp = 0 constraint

• Other than the travelling wave feature, good quantitative 
agreement between WRF and FR

WRF Fourier Ray

Wave Scales, MF Evolution
No Shear, hm = 50 m



• Positive (negative) shear spreads (compresses) MFx in vertical
Shear Effects on MF Evolution
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• ΔUrev can be computed in two equivalent ways:
1. From the time integral of MF gradient:

2. Or, simply from the MF present:

• Follows from Parseval’s theorem + linear theory, or 
alternatively Stokes’ Theorem (Sutherland 2010)

• Used the 2nd  spectral method to compute ΔUrev in the 
Fourier Ray solutions

ΔUrev in Fourier Ray Solutions



• Is non-dissipative ΔU reversible? Yes, but can take several days
ΔUrev Evolution
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WRF Fourier Ray

Damping

Breaking MW Evolution

hm = 500 m
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WRF Fourier Ray
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WRF Fourier Ray

Damping

hm = 500 m

Breaking MW Evolution



• Substantial ΔUrev (5-10 m/s) prior to breaking
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MW Drag Parameterization
• Assumptions: Monochromatic (λx=200km), instant 

propagation, wave amplitude saturates, steady ambient 
(ΔUrev=0), vertical propagation only, 2-D, hydrostatic, no 
lateral variations…

1. Determine MF (next slide), u’ amplitude at surface
2. Determine u’ amplitude, MF at next model level

– Compute u’ amplitude above via MF conservation
• If u’<= U(z): no dissipation, ΔMF/Δz = 0
• If u’> U(z): set u’=U(z), compute new MF

3. Iterate up through all model levels
4. 10-km Vertical Moving Avg Smoother Applied to MF(z)

– Necessary! Enforces vertical scale of dissipation.

5. ΔMF/Δz, ρ(z) used to compute GWD



MW Parameterization Domain
• Average surface MF computed from full terrain spectrum: 

– Applied to parameterized wave over inner 200 km “grid cell” for amplitude
• Parameterized momentum deposition applied to entire domain width
• That is, same MF out of domain as WRF and same initial momentum profile as 

WRF
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• Parameterization: No delay; larger MF alof

0 20 40 60
0

10

20

30

40

50

z 
(k

m
)

U (m/s)

WRF MF Param. MF

No Shear

Positive Shear

Negative Shear

WRF, Parameterization MF Comparison

hm = 500 m Skip for time?



• Substantial ΔUrev (5-10 m/s) prior to breaking
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Sat. MF Deposition: Dependent on Shear
• Saturation Assumption results in MF deposition dependent upon 

ambient vertical wind shear:

• Negative shear develops at zbreak, which causes stronger momentum 
deposition, further increasing shear, …
– Solution blows up afer some time; strongly dependant upon vertical 

resolution

• Apply 10-km (≈λz) vertical running average smoother to MF force a 
dissipation scale

• This allows downward communication of attenuation, descending 
critical level dynamics Probably skip for time



Influence of Event Duration
• Lowest dissipation level decreases with increasing event duration

– Longer durations allow fuller wave spectrum alof, increasing wave amplitudes

• Monochromatic, instantaneous parameterization assumptions eliminate this

WRF Total ΔU(τ,z) at t=72hr

No Shear, hm = 500 m

WRF ΔU Param. ΔUirr

Param. ΔUirr(τ,z) at t=72hr



Conclusions
• A finite duration MW forcing causes non-dissipative 

vertical gradients in MF  ΔUrev

• Cgz spectrum controls spectral evolution alof (at least 
initially)
– Spreads MF profiles vertically, impacts ΔUrev

– Causes temporally asymmetric response in linear cases; 
can take days to recover because of slow long waves

• ΔUrev can be substantial (5-10 m/s) prior to wave 
breaking; ΔUirr dominates, increases with event 
duration/impulse

• Parameterization errors are large, dependent upon 
ambient wind profile



Parameterization Comments
Parameterization Assumptions
1. Instantaneous

– Could be relaxed, but only useful if 2. relaxed as well

2. Monochromatic
– Could be relaxed, but only useful if 1. relaxed as well

3. Steady Background (ΔUrev=0)
– Might give more accurate breaking levels if relaxed

4. Saturation Assumption
– Can under or over predict MF deposition significantly 

depending on ambient wind profile!
• Think relaxing 1. and 2. together will result in better 

performance. Applying saturation spectrally is tricky.



Negative
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Positive 
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WRF, Param Domain Momentum Reduction
• Want to make time series plots of domain (x and z) integrated x-momentum 

for comparison. 



k up to buoyancy cutoffNo Shear

No Shear cgz(z,k), tprop(z,k)



k up to buoyancy cutoff 
at surfaceNegative Shear

Hit Buoyancy Cutoff
Should be Reflected

Hit Buoyancy Cutoff
Should be Reflected

Negative Shear cgz(z,k), tprop(z,k)



k up to buoyancy cutoff 
at surfacePositive Shear

Hit Buoyancy Cutoff
Should be Reflected

Hit Buoyancy Cutoff
Should be Reflected

Positive Shear cgz(z,k), tprop(z,k)



ΔU(z,hm)



ΔU(z,Uz)



ΔU(z,Valve Min)
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