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Mountain Wave Evolution in Response to Rapidly 
Decreasing Cross-Mountain Flow 

Observed by FF9, FF10, and RF22   



GW drag 
from WRF 6-km 
continuous run FF9, 

FF10

   Focus on MW event spanning ~2 days; 12-13 July  
- cross-mountain flow decreased strongly over the event
- stratospheric winds yielded a strong propagation channel into the mesosphere  

Flights included:

FF9 ~19 UT 12 July

FF10 ~23:75 UT 12 July

RF12 ~6:20, 7:10, 8, 
   and 8:50 13 July 

weak forcing 
         & 
 strato. drag



             RF22

FF9 and FF10

Flight Tracks



              ECMWF 700 and 200 hPa geopotential height winds 

06 UT 12 July 18 UT 12 July 06 UT 13 July

- frontal passage, accel. cross-mtn. flow up to ~15 UT at ~200-700 hPa on 12 July 
- decreasing cross-mtn. flow ~15 UT 12 July to ~03 UT 13 July  



U                V 

      Radiosondes at Lauder and Hokitika 

Lauder: 11:40, 
14:37, & 20:42 UT 
on 12 July;
 
 02:38 on 13 July

Hokitika: 05 and  
08 UT on 13 July 

U                V 

weak SW 
cross-mtn. flow 
during RF22

weak E flow 
during RF22

cessation of  
cross-mtn. U 
after ~21 UT



FF9, FF10
       10.7 km

RF12
     12 km

Flight-level observations
- very strong FF9 responses in 
strong 
       cross-mountain flow  
- smaller-scale MFs ~10 times 
       smaller on FF10
- further decreases in amps., MFs
       on RF22 without active forcing



FF9 and FF10 MW Energy and Momentum Flux Spectra 

x~80-200 km

x~20-40 km



RF22 MW Energy and Momentum Flux Spectra – Legs 1 & 2 

x~100-300 
 & 30-60 km 

x~100-300 
 & 40-60 km 



RF22 MW Energy and Momentum Flux Spectra – Legs 3 & 4 

x~100
-300 km

x~100
-200 km



FF9, FF10, and RF22 Cumulative Variances and MFs

0
    FF9              FF10         RF22-1           -2               -3           -4

integrated u' variance 
integrated MFx 

cross-mountain U (limited radiosondes)
AC flight level means?

(to be further quantified with mean FL winds, 
               and band-passed variances and MFs!)

po
si

tiv
e 

va
ria

nc
es

 &
 w

in
ds

, n
eg

ati
ve

 M
F x



Al
tt

ud
e 

(k
m

)

Al
tt

ud
e 

(k
m

)

SABER temperatures – 12:39 UT on 13 July 
Stratospheric and Mesospheric Profiles
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- SABER T(z) on 13 July is very different 
       from Rayleigh lidar T(z) on 12 July  

- possible indication of large-amp. MW  
       in SABER T(z) above~ 70 km

- NAVGEM => U~130 m/s at ~58 km

- suggests reflection of small x<25 km

N ~0.018

Umax ~130 m/s @ ~55-60 km



GV Rayleigh Lidar T(z)

~250 km MW is strongest below 
40 km at the earliest time, ~5 K, 
decreases strongly over the 4-hr 
flight, ampl. at 55-60 km?  

long MW field exhibits ~50 km 
horizontal phase variability 
between segments above 40 km  

MWs having x~20-60 km occur 
at higher altitudes throughout 
RF22, but decrease in amplitude 
at lower altitudes throughout   

MWs at the smallest x have 
near-vertical phase slopes at 
~55-60 km where U is maximum

Intermediate x ~100-150 km 
scales disappear at later times     

6:12 to 6:54 UT

7:02 to 7:41 UT

7:47 to 8:27 UT

8:33 to 9:11 UT



GV Rayleigh Lidar T(x) for RF22 legs 1-4

z=50 km  -  blue

z=55 km  -  white

z=60 km  -  red

~250-300 km MW
fits on legs 2 @ 3 
yield

T' ~ 12 K @ 50 km

    ~ 18 K @ 55-60 km

T' much reduced 
on leg 4

Leg 1 Leg 2

Leg 3 Leg 4



6:12 to 
6:54 UT

7:02 to 
7:41 UT

7:47 to 
8:27 UT

8:33 to 
9:11 UT

GV AMTM and IR wing 
camera fields

provide ~900-km cross-track 
FOVs 

confirm largely ~N-S MW 
phase alignments

confirm superposed larger 
and smaller-scale MWs

confirm variable large-scale 
MW phases along x between 
flight legs

suggest that the dominant x 
varies on less than a 45-min 
time scale

      



GV Na Lidar Na mixing ratios
Na mixing ratios (NMRs) are good tracers 

of advection over short intervals

RF22 NMRs reveal:
 

- multiple regions with  peak-to-peak 
displacements ~10 km or larger

- clear overturning and MW breaking 
at z~75-80+ km 

Large MW scales and displacements 
imply very large momentum fluxes 



UKMO Unified Model simulation of RF22 at 2-km resolution 

00 UT 03 UT

06 UT 09 UT

- init. 12 UT 12 July; BCs by global UM with UKMO analysis; top/sponge at 78/58 km
- captures many features seen at FL and in Rayleigh lidar: superpositions of long and 

short MWs; refraction to small and large z; MW decay as forcing disappears    



6:12 to 6:54 UT

7:02 to 7:41 UT

7:47 to 8:27 UT

8:33 to 9:11 UT

00 UT

03 UT

06 UT

09 UT

Rayleigh lidar – UKMO Unified Model (UM) comparison
UM MW: describes approximate x and superpositions; amplitudes ~2x too small; 
long-x MWs persist too long; short-x MWs persist decay too quickly



UM Mountain Wave Momentum Fluxes

- UM reveals that larger-x MWs from the same source contribute more of the 
total MF at higher altitudes in the RF22 event 

- UM RF22 simulations at 2, 4, 8, 16, and 32 km resolutions also reveal that coarse 
resolution strongly constrains the MW MF to ~50% or less for x <12 x      



Summary

-  RF22 was flown specifically to sample MLT responses to weak MW 
forcing: a few hours at ~10 m/s, decreasing thereafter

- FF9 revealed transient large amplitudes and momentum fluxes at flight 
level, but FF10 and RF22 showed strong & sustained reductions after

- flight level analyses revealed the MW scales that were also seen at much 
higher altitudes

- increasing stratospheric zonal winds created a propagation channel that 
enabled MWs to propagate ~linearly (u'<U) into the mesosphere

- attainment of large amplitudes at z~70-80 km enabled very large 
vertical displacements, ~5 km or more, strong overturning, and 
expected strong instabilities and MW dissipation thereafter

- large responses in the MLT occurred long after cessation of forcing, 
especially for the larger-x MWs having small vertical group velocities

- MLT responses also occurred on a much larger scale than the orography

- a 2-km resolution UM simulation of this event captured many of the 
important features of the observed evolution  
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