

EOL Airborne Sounding and Ground-based Profiling Operations

- Aircraft GPS Dropsondes
- Ground-based Integrated Sounding System (ISS)

(In-Situ Sensing Facility Instrumentation - ISF)

Steve Cohn standing in for Bill Brown and Terry Hock

National Center for Atmospheric Research, Earth Observing Lab (EOL)

DEEPWAVE International Science and Operations Planning Meeting University of Canterbury, Christchurch NZ 21-23 January 2014

DEEPWAVE-NZ NCAR/NSF G-V Automated Dropsonde System

DEEPWAVE-NZ NCAR/NSF G-V Automated Dropsonde System

NCAR/NSF G-V Automated Dropsonde System

Research quality measurements

- Pressure Temperature Humidity Wind speed/direction
- High vertical resolution
- Up to 8 sondes in air simultaneously

Performance Specs

- Fall speed: ~11 m/s near sea level
- Fall time: ~15 min from 45K ft
- Measurement rate: PTU 2 Hz; Wind 4 Hz
- Vertical resolution near surface: PTH ~6 m, Wind ~3 m
- Long telemetry range 300+ km

Mini sonde Size:

- Mass: 165 grams
- Length: 30.5 cm
- Diameter: 4.7 cm

- Pressure
 - 0.1 mb resolution, 0.5 mb repeatability, 100mb to 1050 mb range
- Temperature
 - 0.1° resolution, 0.2° repeatability, -80 ° to +40 ° range
- Humidity
 - 1% resolution, 2% repeatability, 0 to 100% range
- Horizontal wind
 - 0.1 m/s resolution

NCAR/NSF G-V Automated Dropsonde System

Automated Dropsonde Launcher Storage: 50 Dropsondes

<u>Aircraft Data System</u> Up to 8 Dropsondes simultaneously

DEEPWAVE-NZ AVAPS Aircraft Real Data Display and Operator Interface

AVAPS Onboard Software (AGS)

- AGS displays real-time either thermodynamic or wind plots for each of the 8 channels
- Engineering status monitor of automatic launcher

2-button interface For automatic launcher 1) Load sonde 2) Launch sonde

Sonde storage in launcher

DEEPWAVE-NZ Typical Dropsonde Profiles: Three rapid drops

DEEPWAVE-NZ: AVAPS:

DEEPWAVE-NZ DROPSONDE OPERATIONS

- 280 dropsondes
- Estimated 12 20 dropsondes released per flight
- Sonde releases every 10 minutes (approx)

AVAPS system is capable of releases every 150 seconds

- 2 ISF field support staff (one onboard G-V for drop operations) Can support back-to-back flights. System fairly new.
- Skew-T plots in near real-time in the Field Catalog.
- Temp Drop messages (preliminary QC) available via FTP if needed.
- Data QC: Post-processing by ISF scientists Six months or less after DEEPWAVE completion

Integrated Sounding System (ISS)

Ground-based. Suite of instruments to measure detailed profiles of the atmosphere

ISS Components:

- Wind profiler radar
- Radiosonde soundings
- Surface meteorology
- Lab space: integrate measurements, communications

West coast site. Will continuously monitor upstream flow (on-shore flow upwind of mountains).

DEEPWAVE-NZ: ISS

Radar Wind Profiler

- Vertically looking radar to measure wind profile
- Also observes precip and clear-air turbulence
- 449 MHz (66 cm), 4 8 kW (new design)
- NZ radio frequency allocation approved
- Likely range 200 m up to 5 8 km AGL
- Rapid winds (spaced antenna technique; 1-5 minute updates)

DEEPWAVE-NZ: ISS

GPS Radiosonde Soundings

<u>Research quality measurements</u> Pressure – Temperature – Humidity – Wind speed/direction High vertical resolution

- 150 soundings
- Daily launches
- IOP launches 12-hourly prior to GV flights
 - 3 6 hourly during GV flights episodic launches
- Data sent to WMO-GTS
- Real-time plots on the website
- Mix of EOL staff and student operators

ISS Data QC: Post-processing by ISF scientists

Six months or less after DEEPWAVE completion

DEEPWAVE-NZ 10m met tower **Other sensors** Solar radiation (4-comp.) ceilometer 0 rain gauge **Optical distrometer** GPS water vapor webcam

DEEPWAVE-NZ ISS Site

- ISS to be sited at Hokitika airport West side of mountains ~5 commercial flights daily NZ AWS & manual climate obs.
- Lab space in Aeroclub building
- Wind profiler on apron
- Inflate balloons in hanger
- Web cam & antenna on roof
- ISS met tower near AWS

DEEPWAVE-NZ: ISS

Potential Sonde Tracks

We expect some radiosondes to go out of range in IOPs. Second receiving station at University of Canterbury (hosted by Adrian McDonald)

Operations Schedule (ISS)

Activity	Staff	Approx. Dates
Set-up	4 or 5 Staff	15 – 28 May
Ops (pre-GV)	2 staff	29 May – 5 June
Ops (pre-intensive)	1 staff + 2 students	5 – 20 June
Ops (intensive)	2 staff + 3 students	21 June – 4 July
Ops (post-intensive)	1 staff + 2 students	5 July – 23 July
Tear-Down	4 Staff & students	24 – 31 July

CONCORDIASI (Antarctica Driftsonde): Temperature Profiles (3°C offset)

Temperature (C +3C offset)

Wind Profiler time-height data

T-REX (2006, Owens Valley, CA): Wind Profiler parameters

NCAR MAPR Wind Profiler: Precipitation fall speed

EOL/ISF Collaboration Interests

- Advancing radar wind profiler technology
 - Improving wind measurements
 - Comparisons with nearby Hokitika Met Service radar
 - Winds and precipitation and reflectivity
 - Precipitation characteristics measurements
- Orographic flow
 - Measurement of wave characteristics during easterly wind events
- Improved vertical velocity from dropsondes

