Contributions of DLR to DEEPWAVE-NZ

Hans Schlager, Markus Rapp, Bernd Kaifler, Andreas Dörnbrack

> DLR Oberpfaffenhofen Institut für Physik der Atmosphäre

DLR contribution integrated in the BMBF Research Initiative:

Role of the Middle atmosphere In Climate (ROMIC)

by the project "Investigation of the life cycle of gravity waves (GW-LCYCLE)"

ROMIC - Field Campaigns

(1) GW-LCYCLE I

- 2 14 December 2013, Kiruna, Sweden
- DLR Falcon
- simultaneous 3 hourly radiosonde launches along a West-East section from Andøya (N), Esrange (S) to Sodankylä (FIN) during 3 IOPs
- ground-based observations at ALOMAR (radars, lidars) and at Esrange (Lidar)

(2) DEEPWAVE-NZ (DLR contribution)

- total period: 6 June 22 July 2014, New Zealand
- DLR Falcon participation: 22 June 14 July 2014
- ground-based observations (Na-Lidar, radiosondes)

(3) POLSTRACC/GW-LCYCLE II

- winter 2015/2016, Kiruna, Sweden
- coordinated flights of HALO (Gulfstream V) and Falcon
- simultaneous 3 hourly radiosonde launches along a West-East section from Andøya (N), Esrange (S) to Sodankylä (FIN)
- ground-based observations at ALOMAR (radars, lidars) and at Esrange (Lidar, radar)

(1) Scientific Interest in DEEPWAVE-NZ

- o gravity excitation by the flow over the New Zealand mountain range
- o gravity wave propagation from the troposphere to the mesosphere
- o gravity wave modification across the tropopause
- dynamical and chemical processes in the upper troposphere lower stratosphere (StratTrop exchange)

(2) Specific DLR contributions

(a) Falcon observations

- deployment from June 22 until July 14, 2014
- about 60 h for research flights
- combined remote-sensing and in-situ payload of wind, temperature and various trace gases (H₂O, O₃, CH₄, CO, CO₂, N₂O, SO₂, HNO₃)

(b) Ground-based observations

- Sodium-Rayleigh-Brillouin-Raman Lidar (Na-RBR Lidar)
- radiosonde launches in the lee of the southern Alps
- (c) Forecast support (see talk by Jim Doyle)

Falcon measurements - Logistics

Royal New Zealand Air Force Base Ohakea (or Christchurch Airport?)

Airports on New Zealand

Falcon - Instrumentation

Falcon observations - Contributions

Flight level measurement of vertical momentum and energy flux and of various trace gases (H_2O , O_3 , CH_4 , CO, CO_2 , N_2O , SO_2)

- $\,\circ\,\,$ at altitudes from 4 to 11 km, below the NG V,
- $\circ~$ on parallel tracks to the NG V tracks, and
- $_{\odot}~$ on shorter tracks than the long 400 km NG V tracks.

Disturbed wind field and gravity waves over the S. Alps terrain using the 2 μm Doppler wind lidar system underneath the Falcon

Mapping out the cloud field over the S. Alps using the backscatter intensity of the down-looking lidar. Cloud mapping is important as clouds may alter the generation of vertically propagating gravity waves. Expected cloud types include

- $\circ~$ Lenticular (liquid or ice) clouds
- Undulating alto-stratus
- \circ Shallow convective clouds

Falcon observations - Contributions

One-way ferry from Ohakea to Christchurch region ~ 40 min

Falcon observations - Contributions

One-way ferry from Ohakea to Christchurch region ~ 40 min

Falcon observations Examples from GW-LCYCLE I Kiruna, Sweden, 2 – 14 December 2013

Selected examples of IOP 1

- Doppler Wind Lidar observations
- \circ in-situ wind and temperature from basic sensoric
- o trace gases

GW-LCYCLE Campaign, 2-14 Dec. 2013, Kiruna, Sweden

GW-LCYCLE I Kiruna, Sweden, 2 – 14 December 2013

- 24 flight hours of the DLR Falcon in 4 IOPs
- ground-based lidar and radar observations of the stratospheric and mesospheric flow and temperature at Alomar (N) and at Esrange (S)
- simultaneous 3 hourly radiosonde launches from Andøya (N), Esrange (S) and Sodankylä (FIN) during 3 IOPs
- simultaneous radiosonde launches from Arena Arctica at Kiruna airport with two systems (Väisälä and GRAW) and different balloon fillings to obtain different ascent rates (altogether 22 soundings)
- Focus of IOPs: deep mountain wave propagation for strong crossmountain flow events above northern Scandinavia

Favorite meteorological conditions:

- strong cross mountain flow in the lower troposphere
- alignment of tropospheric and stratospheric jet streams
- different regimes wrt tropopause height

2 μm Doppler Wind Lidar Quicklooks IOP 1 03.12. 2013

First flight - first lag - East to West

- The instrument was working without any problems
- The coverage was much lager than expected
- Entire flight was performed with fixed LOS (Nadir)
- The shown flight lag was performed in FL 260 (7.9 km asl)

2 μm Doppler Wind Lidar Quicklooks IOP 1 03.12. 2013

Vertical wind speed (entire lag) FL 260 flight direction from East to West

2 μm Doppler Wind Lidar Quicklooks IOP 1 03.12. 2013

Vertical wind speed (region over the mountains) FL 260 flight direction from East to West

GW-LCYCLE Flug #1 03/12/2013

D-CMET GW-LCYCLE Flug #1 03/12/2013

λ ~ 17 km

13122013 Flight 6 GW-LCYCLE

CO and N₂O measurements by Uni Mainz (Hoor and Müller)

N₂O gives clear indication for stratospheric air:

Zeit [UTC]

13122013 Flight 6 GW-LCYCLE

Box 1

CO and N₂O measurements by Uni Mainz (Hoor and Müller)

Waves with various wavelengths both to see in N₂O and CO!

13122013 Flight 6 GW-LCYCLE

CO and N₂O measurements by Uni Mainz (Hoor and Müller)

Zeit [UTC]

Ground-based observations Examples from GW-LCYCLE I

Kiruna, Sweden, 2 – 14 December 2013

Selected examples of IOP 1

 simultaneous 3 hourly radiosonde launches from Andøya, Esrange, Sodankylä

IOP 1 Simultaneous Radiosonde Launches every 3 h 3 December 2013 06 UTC - 4 December 2013 06 UTC

Na-RBR Lidar

Operation	Ground based system; remote/autonomous operation Real-time data analysis, quicklook plots on webpage
Metal	Sodium (589 nm wavelength)
Measurements	Temperature (5-105 km) Sodium density (80-105 km) One horizontal wind component (80-105 km) Aerosol (5-35 km)
Resolution	2 km, 15-60 min depending on altitude; 1-2 km, 20 min within metal layer
Observations in daylight	Currently not planned, degraded performance in daylight conditions
Output power	0.5 W at 589 nm, 10 W at 532 nm
Telescope aperture	63 cm
Field of view	365 microrad (sodium), 200 microrad (Rayleigh/Raman)

Lidar Messungen über Davis 15./16. August 2011

Bernd Kaifler, *Thermal Structure and Gravity Waves in the Antarctic Middle Atmosphere Observed by Lidar*, PhD Thesis, 2013

Modelling/Forecast Capabilities

(1) ECMWF IFS

(provided by DLR)

- two runs 00 UTC and 12 UTC available, 1 hourly forecasts until lead time +72 h, 3 hourly fcs afterwards until +240 h
- 137 layers up to 0.01 hPa, ~16 km horizontal resolution
- various fields (U, V, W, T, RH, PRECIP, DIV, VOR, PV maps,...) on pressure levels and on selected vertical cross-sections visualized on: <u>www.pa.op.dlr.de/missionsupport/classic/forecasts</u>

(2) WRF driven by ECMWF IFS (Innsbruck University)

- two runs driven by 00 UTC and 12 UTC IFS forecasts
- nested simulations with 6 km resolution and $z_{\text{TOP}} \sim 50$ km
- similar fields as ECMWF IFS plus TKE and non-hydrostatic vertical wind visualized on: <u>www.pa.op.dlr.de/missionsupport/classic/forecasts</u>

(3) COSMO (Bundeswehr Geoinformation Service, Rene Heise) 2.8 km runs to provide vertical wind, eddy dissipation rate and TKE

Thank you for your attention

Institut für Physik der Atmosphäre