MetService and DEEPWAVE

PETER KREFT, CHIEF FORECASTER
TONY QUAYLE, MANAGER OBSERVATIONS AND ENGINEERING

TUESDAY 21 JANUARY 2014
MetService: brief overview

• New Zealand’s National Weather Service
• State-Owned Enterprise
• Many decades of knowledge / experience:
 • Observing systems (New Zealand and Pacific)
 • Numerical modelling
 • 24 x 7 forecasting operations
• Strong involvement in WMO activities
• Outside of New Zealand, MetService owns forecasting operations in Australia and United Kingdom largely focused on the energy market
Areas of responsibility: tropical cyclones

TCWC Wellington

[Map showing areas of responsibility for tropical cyclones, including TCWC Wellington and other locations like New Delhi, Tokyo, Honolulu, Miami, La Reunion, Port Moresby, Nadi, and Wellington.]
Areas of responsibility: volcanic ash

Wellington VAAC
Areas of responsibility: SIGMETs

Wellington Meteorological Watch Office
Areas of responsibility: high seas

New Zealand as Issuing Service
Areas of responsibility: regional severe weather

Wellington as Lead RSMC
Areas of responsibility: local severe weather

MetService as Responsible Agency under National CDEM Plan
Scientific focus: operational forecasting

• 65-odd on-shift meteorologists* organised in groups:
 • Severe weather
 • Regional, including RSMC / TCWC responsibilities
 • Marine, including GMDSS responsibilities
 • Public / media
 • Aviation

• Average operational meteorologist experience
 • Severe weather: ~ 19 years
 • Regional and forecast policy: ~ 13 years
 • Overall: ~ 12 years

* Either ab-initio-trained at MetService or recruited from overseas with technical backgrounds and experience which well exceeds the WMO Meteorologist standard
Scientific focus: modelling, NWP data, research

- Multi-model approach*: ensembles and model “flavours”
 - Global: UKMO, ECMWF, etc.
 - Local: various configurations of WRF
- Tuning models to work best for New Zealand (land use, orography, etc.)
- Customisation (using information theory) of forecast products for decision-making – both by external customers and by forecasters
- 10 scientists; strong mix of physics, maths, computer science
 - Remote sensing
 - Statistics
 - Modelling of physical processes
 - Synoptic and mesoscale meteorology
 - Software development

* 91 different models; 226 forecasts per day; and all are wrong
Radar and Upper Air

Doppler radar

- Scans every 7.5 minutes
- Dual-polarised radar near Hokitika and conventional radar near Christchurch
- Selected PPI-type imagery available via MetConnect
- Polar volume data available
- Coverage shown on slide after next

Upper Air

- Whenuapai, Paraparaumu, Invercargill
- 0000UTC and 1200 UTC (midday and midnight in New Zealand Standard Time)
- Standard and significant levels
- Can modify hardware and software at Invercargill to provide 10-second data – at a cost, and would need a reasonable period of notice
Surface observations

- About 200 automatic weather stations
- Most report every minute
- Data of very high technical quality
- Like radar and upper air:
 - Regularly calibrated
 - Strict maintenance service level agreements in place

- Also gather observations from drifting buoys and voluntary observing ships
Weather stations in project area

- Weather radar coverage at 0.5 degree beam elevation
- Weather radar coverage above 2 degree beam elevation
- Weather radar
- Full AWS (includes cloud, visibility, present weather)
- Standard weather station
- Road weather station

<table>
<thead>
<tr>
<th>ID</th>
<th>VALID</th>
<th>ddd</th>
<th>ff</th>
<th>fm(10)</th>
<th>GG</th>
<th>VVVV</th>
<th>ww</th>
<th>Clouds</th>
<th>TT</th>
<th>Td</th>
<th>RH(1)</th>
<th>PPPP</th>
<th>RRR</th>
<th>WBPT</th>
<th>RMK</th>
</tr>
</thead>
<tbody>
<tr>
<td>WSA</td>
<td>17-Jan-2014 03:00</td>
<td>220</td>
<td>19</td>
<td>29</td>
<td>32</td>
<td>17KM</td>
<td>-SHRA</td>
<td>SCT035/// SCT049/// BKN060///</td>
<td>14.1</td>
<td>8.7</td>
<td>70</td>
<td>1008.2</td>
<td>0.0</td>
<td>10.7</td>
<td></td>
</tr>
<tr>
<td>SJX</td>
<td>17-Jan-2014 03:00</td>
<td>300</td>
<td>02</td>
<td>06</td>
<td>14</td>
<td>//</td>
<td></td>
<td>//</td>
<td>11.6</td>
<td>3.5</td>
<td>58</td>
<td></td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASA</td>
<td>17-Jan-2014 03:00</td>
<td>190</td>
<td>26</td>
<td>39</td>
<td>39</td>
<td>//</td>
<td></td>
<td>//</td>
<td>15.9</td>
<td>2.0</td>
<td>39</td>
<td></td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Satellite data

• Geostationary:
 • Hourly MT-SAT imagery available via MetConnect
 • Raw-ish hourly MT-SAT data (GRIB) available soon

• Polar-orbiting:
 • Various satellites received / processed
 • Raw-ish hourly data (again, likely to be GRIB) could be made available – but probably some cost involved
Identifying sources

- From https://ams.confex.com/ams/19Fluid17Middle/webprogram/Paper226862.html: “...waves that don’t seem to be connected with any topography ...”