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Outline 

 

1. evidence of diverse GW dynamics and instabilities 

 

2. modeling deep GW dynamics  

 - large-amplitude GW breaking  

 - localized GW packets  

 - variable stratification 

 - filtering by tidal shears 

 

3. modeling gravity wave – fine structure interactions 
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Large-amplitude GWs and multi-scale structures are ubiquitous  

Fritts et al. (2004) 
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Kelley et al. (2005) 
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GW "breaking", shear instabilities, often seen in NLC, airglow, radar, lidar 

GWs occur at many scales ~all the time 

Pfrommer et al. (2009) 



large-amplitude  

GW breaking 

– 3D views 

(side & top views) 

 

a = 0.9  

 

 = N/3.2  

 

Re = 104  

 

 

 

 
 

 

 
Fritts et al. (2009) 

Cg 

 

        Cp 



Decreasing mean density 

 =>        - GW amplitudes increase as ~ 1/r1/2 (z) 

        - U ~ 1/r(z)  

        - large accelerations, altered GW phase structures 

   at higher altitudes 
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<u’w’> and U  > 0 

U maximum 

U decreasing 

U increasing =>  leading edge of GW packet 

 accelerates  
  

trailing edge decelerates 

    => self-acceleration  

 & phase distortion  
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GW amplitude growth with altitude yields strong induced mean 

motions, "self acceleration", and other effects 



“Self-acceleration” of a localized GW packet vert. velocity) 

  =>    - steepening phase structures at leading edge 

   - altered GW group velocities and GW instability 

U 

cg 



“Self-acceleration” 

and instability  

dynamics in u', w',  

and z fields 

 

 

=>   - primary SA 

    instability is 2D, 

 - excites additional 

   small-scale GWs 

   

 

 - secondary SA  

   instability is 3D, 

 - occurs in highly    

   sheared trailing  

   GW packet, 

 - yields turbulence 

   and mixing 
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SA dynamics of a 2D 

localized GW packet  
(U + u', positive to the 

right, red) 

- duration ~4 Tb 

 

effects include: 
 

- local body forces, induced 

horiz. & vertical motions 

  

- local mean flow  

 

- secondary GWs at larger 

scales penetrating to much 

higher altitudes 

 

=> two potential sources   

of plasma seeding: 

 

- 3D instabilities (below) 

- 2D GWs in F layer   
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  GW propagating into a 

  mesospheric inversion layer 
 - other large-scale waves may  

 yield similar responses 

 

 - the important GW responses  

     will be nonlinear below ~200 km 

 

 evolution spans ~4 Tb  
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Convective GWs propagating in tidal wind shears 

 
- stochastic convective GWs propagating into a diurnal tide wind field (8oS) 

provided by WACCM-X 

- convective GWs interact strongly with tidal shears, exhibit local dissipation 

below ~200 km, yield secondary GW generation 

- secondary GWs penetrate easily to higher altitudes, exhibit preferential 

propagation against the tidal winds at high altitudes      

t = 4 hr 

t = 10 hr 

t = 22 hr 



 GW – fine structure interactions 

a "simple" DNS of GW-FS superposition 

       - a GW with a = u0'/(c-U) = 0.5,  = N/10, m (= 2p/lz) = 1, Re = lz
2/Tbn = 100,000  

       - and oscillatory fine-structure shears with dUFS/dz = 2N, m ~ 5 

 

  
 

     1. GW (U) & linear (aligned u) fine structure        
 

 

 

 

           



Superposition of GW with a = 0.5,  = N/10, Re = 100,000 
 and small-scale oscillatory shear with dU/dz = N 

- thermal energy dissipation rate (log scale) 



Dominant turbulence sources shown in energy dissipation rate e  
(aligned shears, x-z plane, spanwise mean, t = 11.5 Tb)   

- KH instability (large and small scales) 
 

- GW breaking (or “intrusions”) 



GW – FS interactions => 
complex, highly-structured flows due to sporadic turbulence & mixing 

 

q FS exhibits “sheet and layer” structure during active turbulence 

 

     increasing time t = Tb 



Conclusions  
 

 

 - GWs exhibit diverse dynamics throughout the atmosphere 

 - GW amplitude growth with altitude enables strong interactions 

 and instabilities 

 -  mean and tidal wind shears and variable stratification have 

 strong influences on GW anisotropy and dissipation 

 - multi-scale GW interactions impose significant intermittency   

 in turbulence events, momentum deposition  

 - we should anticipate these dynamics to occur at many scales 

 in DEEPWAVE measurements 

 - DEEPWAVE measurements should provide opportunities 

 for assessing these dynamics, their statistics, and effects 

           - especially near the tropopause and in the MLT  



Anticipated DEEPWAVE Science Collaborations 

(D. Fritts, M. Taylor, and DEEPWAVE colleagues)   
 

Efforts will employ various data and models: 

 
- DEEPWAVE airborne data from NGV and Falcon 

(dropsondes, in-situ, MTP, DLR Doppler lidar) 

- new NGV Rayleigh/Na lidar measurements ~15-100 km 

- new NGV MTM T(x,y,t) measurements at ~87 km 

- GB meteor radar and lidar measurements in NZ, other 

- AIRS/MLS data (S. Eckermann) 

- COAMPS/ECMWF models/reanalysis (J. Doyle, A. Dörnbrack) 

- Finite-Volume DNS of deep GW dynamics, z ~0-200 km 

- Spectral DNS of multi-scale GW dynamics and instabilities in 
UTLS and MLT 



Anticipated DEEPWAVE Science Collaborations 

(D. Fritts, M. Taylor, and DEEPWAVE colleagues)   
 

Science foci: 

 

- quantification of GWs from orographic and other sources,  

their vertical propagation, interactions, and momentum 

deposition at higher altitudes 

 

- multi-scale GW dynamics and instabilities in the UTLS 

  

- GW propagation, filtering, and refraction in the stratosphere 

 

- deep GW dynamics, instabilities, and MF interactions in the 

MLT 

 

- GW-tidal interactions and MF modulation in the MLT 

 

- evaluation/quantification of satellite GW measurements 


