
Mountain wave launching  
and energy diagnostics 

in DEEPWAVE 

Ron Smith, Christopher Kruse 

Yale University 

International DEEPWAVE Meeting: January 21,22, 2014 
Support from the National Science Foundation 



Outline 

1. WRF case study from New Zealand 

2. Gravity wave energy diagnostics 

3. Results from T-REX (wavelet analysis) 

4. Science questions for the Yale group 

5. Potential collaborations 

 

 



WRF run 

• Date and duration: July 10-12, 2011 

• Event has satellite observed waves aloft 

• Strong tropospheric winds; weaker winds aloft 

• Model set-up: 

– dx=dy=3km (inner nest) 

– Sponge layer 15.8 to 19.8km (top) 

– Boundary Conditions from GFS 

 

 



Wave energy diagnostics 

• High-pass filter to identify wave perturbations 

• Products to compute energy diagnostics:  

– Energy fluxes:  Efz=p’w’, Efx=p’u’, Efy=p’v’ 

– Momentum fluxes: MFx=u’w’,Mfy=v’w’ 

– Energy Density: ED= KE+PE 

– Group velocity: CGz=Efz/ED 

•  Low-pass filter reveal bulk wave properties 
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50 m/s iso-surface 

Tropospheric jet crossing NZ 





Smoothed EFz 
2100UTC July 10, 2011 

Iso-surface =10W/m2       L=300km 



Smoothed EFz 
2300 UTC     July11, 2011 

Iso-surface values    EFz=5, 10, 20W/m2 



Tapuae-o-Uenuku  

Mt Cook region 

Mt Aspiring/Tutuko region 



Local smoothed EFz (W/m2)  versus wind speed (m/s)  



1 TeraWatt Area integrated EFz 



WRF estimates: July 10-11, 2011 
• Average mountain wave vertical energy flux:  

7W/m2. 

• Total wave energy flux from NZ: 1 teraWatt. 

• Average momentum flux: 0.15Pa 

• Total momentum flux from NZ: 20 gigaNt 

• Fluxes sensitive to wind speed 

• Fluxes decrease with height 

• All fluxes estimates require observational 
validation 



NZ 

August zonal winds: Polar vortex 

ERA ECMWF Reanalysis 
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Doyle, Reinicke, et al.   



T-REX (2006) 



NSF/NCAR Gulfstream V  (NGV) 
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Correcting static pressure  

using GPS altitude allows  

<w’p’> to be computed in  

mountain waves. 

 

First verification of Eliassen- 

Palm relationship 

But, downward  

propagating  waves 

were also found. 

Smith et al., JAS, 2009 
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Science questions for the Yale group 

• How can the ISS soundings and NGV DWS, in situ and Lidar data be used to 
compare cases, discover wave properties and test models? 

• How do the different DEEPWAVE cases differ and why? 

• What are the most useful gravity wave diagnostics? 

• What is the role of blocking, boundary layers and other non-linearity in 
wave generation?  Can we predict fluxes quantitatively? 

• How do clouds or moist convection alter gravity wave generation? 

• How quickly do the “towers” of vertical energy flux establish themselves 
and then disappear? 

• How do the static stability and wind shear (vertical & horizontal) modify 
the waves in the troposphere and stratosphere? 

• What is the role of wave breaking, secondary generation and downgoing 
waves? 



NSF/NCAR Gulfstream V  (NGV) 





NGV flight  
tracks 



Potential Collaborations with other groups 

• Comparison of aircraft data against models 

• Testing our energy diagnostic methods on 
other models and other aircraft data sets 

• Model intercomparisons 

• Interpretations of lidar GW measurements 

• Moist processes (DWS, radar, raingauge) 

• Evaluate GW parameterizations 
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