S.D. Eckermann¹, J. D. Doyle², J. Ma³, E. A. Hendricks², Q. Jiang², P. Reinecke², D. L. Wu⁴

¹ Space Science Division, Naval Research Laboratory, Washington, DC, USA

² Marine Meteorology Division, Naval Research Laboratory, Monterey, California, USA

³ Computational Physics, Springfield, Virginia, USA

4 NASA Goddard Space Flight Center, Greenbelt, Maryland USA

we gratefully acknowledge support for this research (leveraging participation in DEEPWAVE science) by: 1. The Office of Naval Research (ONR) through NRL's base 6.1 research program 2. NASA, through a research grant under AO NH09ZDA001N-TERRAQUA: The Science of Terra and Aqua Slide 1

 Gravity-Wave Detection in Nadir Radiance Scene
Pre DEEPWAVE Climatologies
Proof-of-Concept Nowcasting/Validation during DEEPWAVE Practice Field Phase
Science Motivation and Goals

we gratefully acknowledge support for this satellite research (leveraging participation in DEEPWAVE science) by: **1. The Office of Naval Research (ONR)** through NRL's base 6.1 research program **2. NASA**, through a research grant under AO NH09ZDA001N-TERRAQUA: The Science of Terra and Aqua

 Gravity-Wave Detection in Nadir Radiance Scene
Pre DEEPWAVE Climatologies
Proof-of-Concept Nowcasting/Validation during DEEPWAVE Practice Field Phase
Science Motivation and Goals

we gratefully acknowledge support for this satellite research (leveraging participation in DEEPWAVE science) by: **1. The Office of Naval Research (ONR)** through NRL's base 6.1 research program **2. NASA**, through a research grant under AO NH09ZDA001N-TERRAQUA: The Science of Terra and Aqua

Satellite GW Product: Executive Summary

- Gravity waves (GWs) are an "accidental detection" in nadir radiances
- First noted ~5-7 years ago as a result of advances in nadir sounding technology, particularly:
 - Improved footprint (horizontal) resolution (~100 km \rightarrow ~10 km): horizontal wavelength
 - Improved precision and reduced noise in radiometric detection channels (NEDTs ~ 0.1-0.5 K): wave amplitude
 - Hyperspectral imagery (more channels → height profiles)
- We have crude forward RT models of GW detection in nadir imagery
 - Partial detection only, and most GWs are not observed at all
 - Fails in the troposphere due to cloud moisture contamination
 - GW detectability changes as background winds vary, making separation of geophysical and instrumental signals tricky

Variation of Gravity-Wave Vertical Wavelength with Winds

$$\frac{2}{N} c \overline{U} \cos N$$

φ wind vector azimuthwave vector azimuth

Ζ

- λ_z gravity-wave vertical wavelength
- c gravity-wave phase velocity ($c \approx 0$)
- *N* background buoyancy frequency
- *U* background wind speed

AIRS 40 hPa Radiance Channels

Slide 6

Wavelength Phase Space for Satellite GW Detection

Previous Satellite Studies: Aura MLS July 2005 Wu and Eckermann (JAS 2005)

 Gravity-Wave Detection in Nadir Radiance Scene
Pre DEEPWAVE Climatologies
Proof-of-Concept Nowcasting/Validation during DEEPWAVE Practice Field Phase
Science Motivation and Goals

we gratefully acknowledge support for this satellite research (leveraging participation in DEEPWAVE science) by: **1. The Office of Naval Research (ONR)** through NRL's base 6.1 research program **2. NASA**, through a research grant under AO NH09ZDA001N-TERRAQUA: The Science of Terra and Aqua

Slide 11

RMS AIRS Radiance: 7 hPa

Hemispheric Perspective

- Broad band of enhanced variance over Southern Ocean
- Clearly nonorographic sources
- Well correlated with midlatitude spiral jet

Hendricks et al. J. Atmos. Sci., in press, 2014.

Southern Ocean to Antarctica

Asc+Des 2 hPa

60 80

60 80

60 80 100

days

South Island

days

Asc+Des 40 hPa

days

Asc+Des 7 hPa

Aug

\uq

100

Slide 18

Gravity-Wave Detection in Nadir Radiance Scene
Pre DEEPWAVE Climatologies

3. Proof-of-Concept Nowcasting/Validation during DEEPWAVE Practice Field Phase

4. Science Motivation and Goals

we gratefully acknowledge support for this satellite research (leveraging participation in DEEPWAVE science) by: **1. The Office of Naval Research (ONR)** through NRL's base 6.1 research program **2. NASA**, through a research grant under AO NH09ZDA001N-TERRAQUA: The Science of Terra and Aqua

Slide 21

 Gravity-Wave Detection in Nadir Radiance Scene
Pre DEEPWAVE Climatologies
Proof-of-Concept Nowcasting/Validation during DEEPWAVE Practice Field Phase
Science Motivation and Goals

we gratefully acknowledge support for this satellite research (leveraging participation in DEEPWAVE science) by: **1. The Office of Naval Research (ONR)** through NRL's base 6.1 research program **2. NASA**, through a research grant under AO NH09ZDA001N-TERRAQUA: The Science of Terra and Aqua

2011.07.10 Ascending 80 hPa

Rich Variable Wave Structure: Not Understood

Specific Science Questions for DEEPWAVE

- <u>Question</u>: Which stratospheric gravity waves are and are not resolved in satellite imagery?
- <u>**Closure</u>**: Coincident "ground truth" NGV deep GW measurements during satellite overpasses, forward modeled into satellite radiances</u>
- <u>Question</u>: What are the origins of rich variable 3D GW structures seen in satellite GW swath imagery in the DEEPWAVE RAO?
- **<u>Closure</u>**: DEEPWAVE NGV measurements and detailed 3D modeling
- Questions: What are the dominant sources of GWs in DEEPWAVE RAO? What are the relative flux contributions of GWs of various sources to the stratospheric circulation and climate?
- <u>**Closure</u>**: DEEPWAVE NGV measurements, detailed 3D modeling and parameterization</u>

Questions?

Backup Slides follow....

NSF DEEPWAVE Mission: June-July 2014

Channel Averaging: 100-2 hPa

50 raw channel radiances \rightarrow 12 net channel radiances

Gong Wu & Eckermann (Atmos. Chem. Phys., 12, 1701-1720, 2012)

Min. detectable GW var. $(\times 10^{-3} \text{ K}^2)$

Pressure (hPa)	Channel numbers	Noise (K ²)	NEdT (K ²)	Zonal mean	Map
2	74	0.149	0.165	3.78	26.64
2.5	75	0.147	0.166	3.72	26.22
3	76	0.143	0.161	3.63	25.55
4	77	0.145	0.160	3.66	25.80
7	78	0.153	0.162	3.88	27.34
10	79	0.182	0.172	4.62	32.53
20	81, 82	0.084	0.078	2.14	15.05
30	102, 108, 114, 120, 125, 126	0.039	0.029	0.98	6.88
40	64, 88, 90, 94 , 100 , 106, 118	0.033	0.028	0.83	5.86
60	66, 68, 70, 86, 87, 91, 93, 97 , 130	0.026	0.018	0.66	4.68
80	92, 98, 104, 105, 110, 111, 116 ,	0.020	0.011	0.50	3.54
	117, 122, 123, 128, 129, 134, 140				
100	132, 133, 138, 139, 149, 152	0.026	0.014	0.67	4.73

Isolating Small-Scale Gravity-Wave Perturbations from AIRS Level 1b Swath Radiance Imagery

Fit large-scale radiance structure in swath imagery:

- Smooth raw radiances along track using a 33-point running average (660 km)
- Fit every cross-track scan (90 points) of these smoothed radiances using a sixth-order polynomial (to capture both geophysical cross-track gradients as well as limb effects)
- Smooth fitted fields further using 15-point along-track running average

Subtract these fits of large-scale structure from raw radiances to isolate small-scale perturbation structure in the swath imagery.

Previous Satellite Studies: Aura MLS July 2005 Wu and Eckermann (JAS 2008) Ascending 37 km 10^{-3} K^2