Deep Stratospheric Gravity Waves Imaged from Satellites in Support of DEEPWAVE Science

S.D. Eckermann\(^1\), J. D. Doyle\(^2\), J. Ma\(^3\), E. A. Hendricks\(^2\), Q. Jiang\(^2\), P. Reinecke\(^2\), D. L. Wu\(^4\)

\(^1\) Space Science Division, Naval Research Laboratory, Washington, DC, USA
\(^2\) Marine Meteorology Division, Naval Research Laboratory, Monterey, California, USA
\(^3\) Computational Physics, Springfield, Virginia, USA
\(^4\) NASA Goddard Space Flight Center, Greenbelt, Maryland USA

we gratefully acknowledge support for this research (leveraging participation in DEEPWAVE science) by:

1. The Office of Naval Research (ONR) through NRL’s base 6.1 research program
2. NASA, through a research grant under AO NH09ZDA001N-TERRAQUA: The Science of Terra and Aqua
Deep Stratospheric Gravity Waves Imaged from Satellites in Support of DEEPWAVE Science

1. Gravity-Wave Detection in Nadir Radiance Scene
2. Pre DEEPWAVE Climatologies
3. Proof-of-Concept Nowcasting/Validation during DEEPWAVE Practice Field Phase
4. Science Motivation and Goals

we gratefully acknowledge support for this satellite research (leveraging participation in DEEPWAVE science) by:

1. The Office of Naval Research (ONR) through NRL’s base 6.1 research program
2. NASA, through a research grant under AO NH09ZDA001N-TERRAQUA: The Science of Terra and Aqua
Deep Stratospheric Gravity Waves Imaged from Satellites in Support of DEEPWAVE Science

1. Gravity-Wave Detection in Nadir Radiance Scene
2. Pre DEEPWAVE Climatologies
3. Proof-of-Concept Nowcasting/Validation during DEEPWAVE Practice Field Phase
4. Science Motivation and Goals

we gratefully acknowledge support for this satellite research (leveraging participation in DEEPWAVE science) by:

1. The Office of Naval Research (ONR) through NRL’s base 6.1 research program
2. NASA, through a research grant under AO NH09ZDA001N-TERRAQUA: The Science of Terra and Aqua
Satellite GW Product: Executive Summary

• Gravity waves (GWs) are an “accidental detection” in nadir radiances

• First noted ~5-7 years ago as a result of advances in nadir sounding technology, particularly:
 • Improved footprint (horizontal) resolution (~100 km → ~10 km): horizontal wavelength
 • Improved precision and reduced noise in radiometric detection channels (NEDTs ~ 0.1-0.5 K): wave amplitude
 • Hyperspectral imagery (more channels → height profiles)

• We have crude forward RT models of GW detection in nadir imagery
 • Partial detection only, and most GWs are not observed at all
 • Fails in the troposphere due to cloud moisture contamination
 • GW detectability changes as background winds vary, making separation of geophysical and instrumental signals tricky
Variation of Gravity-Wave Vertical Wavelength with Winds

\[\frac{2c \bar{U} \cos \varphi}{N} \]

\(\varphi \) wind vector azimuth
\(\lambda_z \) gravity-wave vertical wavelength
\(c \) gravity-wave phase velocity (\(c \approx 0 \))
\(N \) background buoyancy frequency
\(\bar{U} \) background wind speed
AIRS 40 hPa Radiance Channels

AIRS channels 64, 88, 90, 94, 100, 106 & 118 (665.015–678.839 cm$^{-1}$)

Individual Channel Radiances 64,…,118

Mean Channel Radiance 64,…,118

AIRS channel 71 (666.773 cm$^{-1}$).

see Hoffmann and Alexander (JGR, 2009)
Eckermann et al. (GRL 2009)
Wavelength Phase Space for Satellite GW Detection

adapted from Preusse et al. (JGR 2008)
Previous Satellite Studies: Aura MLS July 2005

Wu and Eckermann (JAS 2005)

Mean Zonal Winds (m s$^{-1}$)

Satellite GW Variances

5.0 hPa

10^{-3} K2
Deep Stratospheric Gravity Waves Imaged from Satellites in Support of DEEPWAVE Science

1. Gravity-Wave Detection in Nadir Radiance Scene
2. Pre DEEPWAVE Climatologies
3. Proof-of-Concept Nowcasting/Validation during DEEPWAVE Practice Field Phase
4. Science Motivation and Goals

we gratefully acknowledge support for this satellite research (leveraging participation in DEEPWAVE science) by:

1. The Office of Naval Research (ONR) through NRL’s base 6.1 research program
2. NASA, through a research grant under AO NH09ZDA001N-TERRAQUA: The Science of Terra and Aqua
Greater Australia/New Zealand Region

Eckermann and Wu [GRL 2012]
Hemispheric Perspective

- Broad band of enhanced variance over Southern Ocean
- Clearly nonorographic sources
- Well correlated with midlatitude spiral jet

Southern Ocean to Antarctica

AIRS 3hPa
2003-2011
Deep Stratospheric Gravity Waves Imaged from Satellites in Support of DEEPWAVE Science

1. Gravity-Wave Detection in Nadir Radiance Scene
2. Pre DEEPWAVE Climatologies
3. Proof-of-Concept Nowcasting/Validation during DEEPWAVE Practice Field Phase
4. Science Motivation and Goals

we gratefully acknowledge support for this satellite research (leveraging participation in DEEPWAVE science) by:

1. The Office of Naval Research (ONR) through NRL’s base 6.1 research program
2. NASA, through a research grant under AO NH09ZDA001N-TERRAQUA: The Science of Terra and Aqua
Near-realtime Aqua Level 1b Radiances

Overpass Statistics
- **Christchurch**: Closest ascending overpass at 03.02 UTC, Closest descending overpass at 14.13 UTC.
- **Hobart**: Closest ascending overpass at 04.67 UTC, Closest descending overpass at 15.78 UTC.
- **Macquarie Island**: Closest ascending overpass at 02.98 UTC, Closest descending overpass at 14.19 UTC.
- **Sturgeon Island**: Closest ascending overpass at 04.95 UTC, Closest descending overpass at 12.61 UTC.
Deep Stratospheric Gravity Waves Imaged from Satellites in Support of DEEPWAVE Science

1. Gravity-Wave Detection in Nadir Radiance Scene
2. Pre DEEPWAVE Climatologies
3. Proof-of-Concept Nowcasting/Validation during DEEPWAVE Practice Field Phase
4. Science Motivation and Goals

we gratefully acknowledge support for this satellite research (leveraging participation in DEEPWAVE science) by:

1. The Office of Naval Research (ONR) through NRL’s base 6.1 research program
2. NASA, through a research grant under AO NH09ZDA001N-TERRAQUA: The Science of Terra and Aqua
Rich Variable Wave Structure: Not Understood
Specific Science Questions for DEEPWAVE

Question: Which stratospheric gravity waves are and are not resolved in satellite imagery?

Closure: Coincident “ground truth” NGV deep GW measurements during satellite overpasses, forward modeled into satellite radiances

Question: What are the origins of rich variable 3D GW structures seen in satellite GW swath imagery in the DEEPWAVE RAO?

Closure: DEEPWAVE NGV measurements and detailed 3D modeling

Questions: What are the dominant sources of GWs in DEEPWAVE RAO? What are the relative flux contributions of GWs of various sources to the stratospheric circulation and climate?

Closure: DEEPWAVE NGV measurements, detailed 3D modeling and parameterization
Questions?
Backup Slides follow....
NSF DEEPWAVE Mission: June-July 2014

Remote-Sensing from the NSF/NCAR Gulfstream V

- Airglow temp. imager
- Na Lidar wind & temp.
- Rayleigh Lidar density & temp.
- Rayleigh Lidar wind & temperature
- Microwave Temperature Profiler
- Dropsondes

Temperatures
- Thermosphere
- Mesosphere
- Stratosphere
- Troposphere
- Tropopause
- Stratosphere
- Mesopause
- Thermosphere

Topographic elevation
- Outer NGV Envelope
- Observational Site
- City/Airport

Predictability Flight
- Overpass/Ferry Flight
- GW Racetrack Flight
Channel Averaging: 100-2 hPa

50 raw channel radiances → 12 net channel radiances

<table>
<thead>
<tr>
<th>Pressure (hPa)</th>
<th>Channel numbers</th>
<th>Noise (K²)</th>
<th>NEdT (K²)</th>
<th>Zonal mean</th>
<th>Map</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>74</td>
<td>0.149</td>
<td>0.165</td>
<td>3.78</td>
<td>26.64</td>
</tr>
<tr>
<td>2.5</td>
<td>75</td>
<td>0.147</td>
<td>0.166</td>
<td>3.72</td>
<td>26.22</td>
</tr>
<tr>
<td>3</td>
<td>76</td>
<td>0.143</td>
<td>0.161</td>
<td>3.63</td>
<td>25.55</td>
</tr>
<tr>
<td>4</td>
<td>77</td>
<td>0.145</td>
<td>0.160</td>
<td>3.66</td>
<td>25.80</td>
</tr>
<tr>
<td>7</td>
<td>78</td>
<td>0.153</td>
<td>0.162</td>
<td>3.88</td>
<td>27.34</td>
</tr>
<tr>
<td>10</td>
<td>79, 81, 82</td>
<td>0.182</td>
<td>0.172</td>
<td>4.62</td>
<td>32.53</td>
</tr>
<tr>
<td>20</td>
<td>102, 108, 114, 120, 125, 126</td>
<td>0.084</td>
<td>0.078</td>
<td>2.14</td>
<td>15.05</td>
</tr>
<tr>
<td>30</td>
<td>64, 88, 90, 94, 100, 106, 118</td>
<td>0.039</td>
<td>0.029</td>
<td>0.98</td>
<td>6.88</td>
</tr>
<tr>
<td>40</td>
<td>66, 68, 70, 86, 87, 91, 93, 97, 130</td>
<td>0.033</td>
<td>0.028</td>
<td>0.83</td>
<td>5.86</td>
</tr>
<tr>
<td>60</td>
<td>92, 98, 104, 105, 110, 111, 116, 117, 122, 123, 128, 129, 134, 140</td>
<td>0.026</td>
<td>0.018</td>
<td>0.66</td>
<td>4.68</td>
</tr>
<tr>
<td>80</td>
<td>132, 133, 138, 139, 149, 152</td>
<td>0.020</td>
<td>0.011</td>
<td>0.50</td>
<td>3.54</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>0.026</td>
<td>0.014</td>
<td>0.67</td>
<td>4.73</td>
</tr>
</tbody>
</table>
Isolating Small-Scale Gravity-Wave Perturbations from AIRS Level 1b Swath Radiance Imagery

Fit large-scale radiance structure in swath imagery:

- Smooth raw radiances along track using a 33-point running average (660 km)
- Fit every cross-track scan (90 points) of these smoothed radiances using a sixth-order polynomial (to capture both geophysical cross-track gradients as well as limb effects)
- Smooth fitted fields further using 15-point along-track running average

Subtract these fits of large-scale structure from raw radiances to isolate small-scale perturbation structure in the swath imagery.
AIRS RMS Brightness Temperatures
June-August 2003-2011

(a) Topographic Elevation

(b) RMS AIRS Radiance: 100 hPa

(e) RMS AIRS Radiance: 10 hPa

(f) RMS AIRS Radiance: 2 hPa
Previous Satellite Studies: Aura MLS July 2005

Wu and Eckermann (JAS 2008)

Ascending 37 km

\[10^{-3} \, K^2 \]