The Deep Propagating Gravity Wave Experiment (DEEPWAVE)

Science Overview and Approach

U.S. PIs: Dave Fritts¹, Ron Smith², Mike Taylor³, Jim Doyle⁴, Steve Eckermann⁵, and Steve Smith⁶

> ¹GATS, Boulder, CO ²Yale University, New Haven, CT ³Utah State University, Logan, UT ⁴Naval Research Laboratory, Monterey, CA ⁵Naval Research Laboratory, Washington, DC ⁶Boston University, Boston, MA

DEEPWAVE Motivation:

Why are deep propagating GWs important?

- GWs account for primary vertical energy & momentum transport at all levels
- GCM parameterizations of GWs are known to be seriously deficient
- The important GWs are not resolved by satellite measurements or GCMs
- Better GW parameterizations require improved understanding, coordinated measurements and modeling studies

GW scale sensitivity and needs

- New measurements are needed to identify and quantify deep GW dynamics
- Efforts are needed to calibrate satellite measurement capabilities

DEEPWAVE Approach:

- Perform comprehensive measurements at a location where these dynamics
 <u>have large responses</u> and <u>can be quantified with confidence</u>
 - desire sensitivity to several major GW sources
- Expand measurement capabilities to dramatically increase data accuracy and vertical extent – spanning altitudes of ~0-100 km
- Bring additional U.S. and international resources to enhance the value to the research community
- Include extensive forecasting and modeling activities for better understanding

Site selection focused on Austral Winter GW "Hot Spots" (stronger responses, minimal SSW risk compared to N.H.)

GW sources with strong stratospheric responses include S. Andes, Antarctic Peninsula, New Zealand, and Tasmania - S. Andes/AP (SAANGRIA) judged not feasible for NGV operations

DEEPWAVE "Region of Airborne Operations" (RAO) is the 2nd largest GW hotspot on Earth

major GW sources include:

- topography (NZ, Tasmania, islands)
- circumpolar jet (Southern Ocean)
- frontal systems

New Zealand is a very good operational environment with good ground-based instrument support

Deep GW Propagation over New Zealand

 high frequency of multi-day strong forcing events
 expect ~10 (minimum 3, maximum ~15) events with U > 15 ms⁻¹ in 6-week campaign

Mountain wave propagation to high altitudes is common in S. Hemisphere

Strong flows over New Zealand and Tasmania are prominent GW sources

GWs at ~41 km over New Zealand & the Southern Ocean

- rich sources of large-amplitude GWs

Austral Winter also provides a stronger zonal jet and strong **<u>GW propagation channel</u>** enabling GWs to penetrate to very high altitudes - in an ideal natural laboratory **DEEPWAVE research focus** 300K GW-Driven Residual 80 0.01 Circulation pressure height (km) 60 Wind Speed (m/s) 0.1 80 250K (hPa) 60 ar stratopause od ו pressure 40 10 200K 61 **Polar Vortex Stratosphere** 20 PSC: 100 0 Troposphere Christchurch 30°S 1000 150K 60°S 90°S EQ

New DEEPWAVE instruments will provide sensitivity to the dominant GW scales relevant to quantifying GW influences and parameterization needs

DEEPWAVE Field Campaign and Measurement Plans - field program 5 June – 21 July 2014

NSF/NCAR Gulfstream V (NGV) with new lidars and MTM measuring from ~15 – 100 km

DLR Falcon with Doppler lidar measuring from ~0 – 11 km

DEEPWAVE Instrumentation - all demonstrated in Feb. 2013 NGV test flights

Instrument	Parameters	Altitudes	Impact
<i>In situ</i> instruments (gust probe, GPS)	 Winds, temperature, O₃, aerosol, humidity 1-5 Hz (Δx~50-250 m) 	Flight level (5-13 km)	Along-track hi-res GW & turbulence data
Dropsondes	 Wind & temperature profiles Δz~100 m 	Below aircraft (0-13 km)	Flow environment, GW structure below flight level
Microwave Temperature Profiler (MTP)	Temperature profiles •±1-2 K, Δz ~0.7-3 km, 10-15 s integration (Δx ~2-4 km)	~5-20 km	GW structure above & below GV
Rayleigh lidar	Temperature profiles •±2-8 K, Δz~2 km, 20-s integration (Δx~4 km)	<i>T</i> ~30-50+ km	GW structure GW-induced PSCs
Sodium (Na) resonance lidar	dium (Na) sonance lidar •±1-3 K, Δz~3-5 km, 20-s int. (Δx~4 km) vertical wind •±1-3 m/s, Δz~3-5 km, 20-s int. (Δx~5 km)		GW structure
Mesospheric Temperature Mapper (MTM)	All sky OH airglow and temperature •±2 K, 2-s integration/TDI (Δx~1 km)	~87 km	2D map of GW and instability structures, propagation directions

Existing Facility Instruments

New Facility instruments recently developed for DEEPWAVE

DEEPWAVE PIs have developed 3 new NGV instruments to extend DEEPWAVE measurements from ~0 to 100 km

- Rayleigh lidar T and T'(z,t) ~30 60 km
- Na resonance lidar w' and T'(z,t) ~15-30 km and ~80-100 km)
- Mesosphere Temperature Mapper (MTM) T and T'(x,y,t) ~87 km

Rayleigh and Na lidars (Biff Williams, GATS)

MTM (Mike Taylor, USU)

NGV UV and sodium lidar measurements

UV lidar: ~5 W pulsed densities (temperatures) ~30-60 km

Na lidar: ~14 W CW, pulsed/32-channel scanned vert. winds, temps. – double-edge filter, Na res. ~15 – 30 km, ~80 – 100 km

NGV MTM measurements ~87 km OH airglow

- continuous horizontal map of temperature: ∆x, ∆y ~0.5 km (~120 km along track, ~80 km cross track)
- temporal span ~10 min to track evolution of small-scale features

MTM temperatures

MTM along-track mapping

~6-hr test flight

Example MTM OH Temperature Movie

DEEPWAVE measurements will also be augmented through DLR participation with an airborne Doppler lidar, in-situ measurements, dropsondes, and a ground-based Na lidar

DLR Doppler lidar and dropsondes will yield:

mean winds, GW structure,
 amplitudes, and momentum fluxes
 ~0 to 11 km

DLR ground-based Na lidar will yield:

- Rayleigh temperatures ~5-70 km

- radial winds ~80-105 km, if Na resonance capabilities are in place

DEEPWAVE ground-based measurements

NCAR ISS, Hokitika (balloons, 449 MHz BLR) meteor radar, Birdling's Flat (J. Baggaley) airglow imager, Mt. John (S. Smith, BU)
FPI, Mt. John (G. Hernandez, UW)
MTM, Lauder (M. Taylor, USU)
Na lidar, Lauder (B. Kaifler, DLR)
balloons at various sites (NZ, Australia, DLR)
AAD - Rayleigh lidar, sondes, Hobart, other

- Antarctic radars, lidar, airglow Davis (68.6°S, Australia)

DEEPWAVE and correlative measurement capabilities

Forecasting and modeling support for DEEPWAVE

NOGAPS-ALPHA global (S. Eckermann, NRL) - data assimilation, forecasting

COAMPS deep nested mesoscale (J. Doyle, NRL) - data assimilation, forecasting, predictability

> ECMWF forecasts (A. Dörnbrack, DLR) - support for flight planning

WRF (R. Smith, Yale, and A. Dörnbrack, DLR) - orographic gravity wave forcing, lower altitudes

Finite-Volume regional (GATS, D. Fritts) - compressible/anelastic, deep (~0-300 km) GW wave responses, interactions & instabilities

Spectral fine scale (GATS, D. Fritts) - GW interactions, instabilities, and turbulence

DEEPWAVE Flight Forecasting - successful "Dry Run" exercise 5-15 Aug. 2013 - major contributors – NOGAPS, COAMPS, ECMWF

New Zealand Flight 8 August 2013

ECMWF Divergence (10 hPa) DV (10^5 s^1, pos.; red, neg.; blue, Delta=4) and Z (m) at 10hPa

Tasmania Flight 10 August 2013

ECMWF Divergence (10 hPa) DIV (10^-5 s^-1, pos.; red, neg.; blue, Delta=4) and Z (m) at 10hPa

S. Ocean Flight 15 August 2013

AIRS Radiances (3 hPa)

DEEPWAVE "upstream" predictability flights

NGV "predictability" flights will target upstream sites anticipated to have structures that project strongly onto MW responses ~24-48 hr later

Subsequent MW flights will assess predictability skill

DEEPWAVE "mountain wave" flights

Waypoints:

1: 2: 8: 9: Yellow flight plan ~7375 km ~3982 nm Red flight plan ~6755 km ~3648 nm

150E, 40.55		
145E, 42.5S	Flight altitudes:	to WP1: max efficiency
148E, 46S		over TAS: staggered altitudes
Christchurch		return from WP3: max efficiency
	Dropsondes:	upstream over TAS
	0: 0:	frequent sampl. on return from WP3

DEEPWAVE science (all)

We anticipate a wide range of collaborative studies involving:

- analyses of DEEPWAVE measurements
- modeling of observed dynamics
- merging and comparisons of analyses, modeling, & satellite meas.

COAMPS / WRF mesoscale modeling (Doyle, Smith, Dörnbrack)

