A Flight Decision Tool for DC3

Arthur Small Satyajit Bose Christopher Hanlon Johannes Verlinde George Young

22 February 2012

DC3 Boulder Workshop

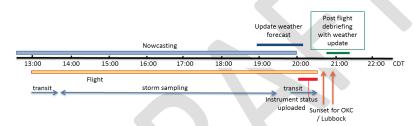
©2012 Arthur A. Small, III, Satyajit Bose, Christopher Hanlon, Johannes Verlinde and George Young

Outline

Introduction: Decision-making using statistical decision analysis

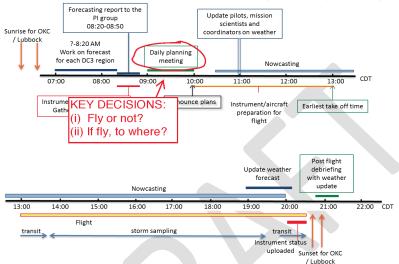
Example use case

First component: Algorithmic forecasting


Second component: Optimization

Current status and next steps

Daily decision problem


DC3 DAILY SCHEDULE FOR ACTIVE STORM IN OKLAHOMA FLIGHT DAY NO FLIGHT THE FOLLOWING DAY

Daily decision problem

DC3 DAILY SCHEDULE FOR ACTIVE STORM IN OKLAHOMA FLIGHT DAY NO FLIGHT THE FOLLOWING DAY

Optimal decisions depends on several factors

Probabilities of suitable conditions:

- What is probability of good conditions today at CO, OK, AL?
- ▶ How likely that better conditions will emerge on future dates?

Investigators' goals:

- Are some locations more important than others?
- ▶ How important is *balance* in the data portfolio, with several days from each site?

Goal: Build an algorithmic recommendation tool to clarify stakes, illuminate trade-offs, suggest optimal actions.

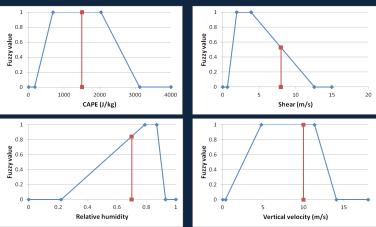
 ${\it Method:}$ Statistical decision analysis: probabilistic forecasting + optimization

Example use case

Two days left in field season.

Eight flight hours (one flight) left.

Current score: CO 2, OK 0, AL 4


Success probabilities P_{CO}, P_{OK}, P_{AL} generated by algorithmic forecasting tool. . .

Forecast methodology

- Fuzzy Logic system predicts odds of suitable Wx
- WRF Predictors:
 - CAPE (region median)
 - 0-500m/0-6000m shear (region median)
 - RH_{1700/500} (region median)
 - W_{max1850/700} (region maximum)
- Predictors converted to values between 0 and 1 representing suitability
- Fuzzy Logic trapezoid tuned by Genetic Algorithm
- P = min(P_i) (other "and" operators possible)

Fuzzy logic example

 OK Fx: median CAPE 1500 J/kg, median shear 8 m/s, median 700mb RH 70%, max 850mb w 10 m/s

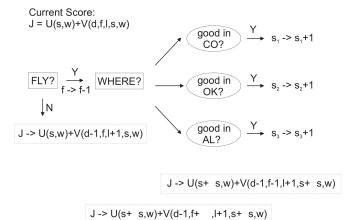
Fuzzy logic example

- Fuzzy logic values:
 - CAPE: 1
 - Shear: 0.53
 - RH: 0.84
 - W: 1
- Pseudo-probability = min(values) = 0.53
- Use history of forecasts, verification to convert to conditional hourly forecast probability: 0.15

Example use case, continued

Two days left in field season.

Eight flight hours (one flight) left.


Current score: CO 2, OK 0, AL 4

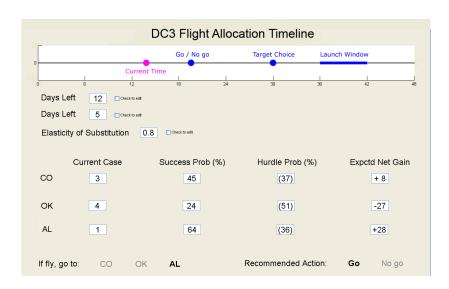
Success probabilities P_{CO} , P_{OK} , P_{AL} generated by algorithmic forecasting tool: $P_{CO} = 0.5$, $P_{OK} = 0.3$, $P_{AL} = 0.75$

What to do?

- ▶ "Best site": CO
- "Balanced portfolio": OK
- "Safest choice": AL
- Or wait for tomorrow?

Model the decision problem, solve using tools from operations research, quantitative finance

Current status and next steps


Probabilistic forecasting component: pretty much done.

Optimization component: currently generating decision rules covering all possible situations (brute force simulation).

Still to go:

- ► Elicit preferences from PI's
- Code up live version
- Create front-end decision dashboard

Initial mock-up for dashboard

Thanks!

Arthur A. Small, III

Venti Risk Management, arthur.small@ventirisk.com

Satyajit Bose

Venti Risk Management

Christopher Hanlon, Johannes Verlinde, George Young

Penn State University

