\rightarrow **1. Introduction and Background** Introduction pue **Background**

The Madden-Julian oscillation (MJO) produces variations in low-level winds over the
east Pacific warm pool that force variability in summertime precipitation, and an
associated modulation of tropical cyclones. Recent studi The Madden-Julian oscillation (MJO) produces (e.g. Walisersummertime MJO-related variations may be predictable up to 2-3 weeks in advance associated modulation of tropical cyclones east Pacific warm pool that force variability in summertime precipitation, and an EPIC2001 experiment, expressed in terms of 200 hPa et al. 1999). As shown below, one such event occurred during the . Recent studies have shown that these variations in low-level winds over the velocity potential. **the**

Air-Sea Interaction in the Tropical Northeast Pacific Boreal Summer Intraseasonal Variability and \boldsymbol{G} U $\mathbf O$ 99 $\overline{}$ eal $\overline{\mathbf{5}}$ $\overline{\mathbf{d}}$ \boldsymbol{G} $\overline{}$ unme $\mathbf{\Omega}$ Ctio \blacksquare \blacktriangledown $\overline{\mathbf{5}}$ <u> The Contract of the Contract</u> Ufr $\overline{}$ $\overline{}$ $\frac{9}{5}$ $\overline{\Phi}$ 689 $\overline{}$ \blacktriangle $\mathbf O$ O $\overline{}$ $\overline{}$ Ω $\overline{\mathbf{z}}$ $\boldsymbol{\omega}$ **ar** \bullet **The Co ap** \blacksquare $\overline{}$ $\boldsymbol{\Phi}$ ≕ $\boldsymbol{\omega}$ **IIty** $\boldsymbol{\omega}$ $\overline{}$ $\overline{\mathbf{z}}$ $\overline{\mathbf{U}}$ D
O 30 ific

Eric Eric D. Maloney and Steven K. Esbensen \overline{C} Maloney pue **Ofe**

College College of Oceanic and Atmospheric Sciences Q_{\uparrow} Oceanic Oregon Oregon State University State and Atm \overline{u} iversity ospheric Sciences

Correspondence: maloney@coas.oregonstate.edu Correspondence: maloney@coas.oregons Prc *Project Web Site: http://oregonstate.edu/~maloneye/* \mathcal{Q} . **Ct** Web Site: http://oregonstate.e ar maloneye

filtered zonal wind (7.5 A more generalized lag-correlation analys region in precipitation and winds is as dominant as anywhere in the Tropics. Spectral analysis indicates that a strong intraseasonal peak (~50 days) in the east MJO wind anomalies into the tropical eastern north Pacific during summertime. Pacific warm pool occurs then (see below). The intraseasonal spectral peak in this o N-12.5 ^oN averaged) shows significant eastward propagation of N averaged) shows significant is of NCEP reanalysis 30-90 day bandpass $Q_{\rm t}$

and by variations in eddy activity, including iding
Iding **DO**

> Intraseasonal SST variance during summertime maximizes over the
east Pacific warm pool (see right), with another maximum in a band
just to the north of the equator. The intraseasonal band (30-100 days)
explains about 30% o just to the north of the equator. The intraseasonal band (30-100 days) over the east Pacific warm pool during summertime. explains about 30% of the total SST variance (including interannual) east Pacific warm pool (see right), with another maximum in a band Intraseasonal SST variance during summertime maximizes over the

The equatorial variance maximum is likely associated with tropical
instability waves, having a dominant period closer to 30 days than the
40-50 day periodicity associated with the MJO. The equatorial variance maximum is likely associated with tropical 40-50 day periodicity associated with the MJO. instability waves, having a dominant period closer to 30 days than the

SSTs within t
about 1/8 of a **SSTs in the :
during sumn
coherence sc
While phase
SSTs within t** pool and
Maloney equi

alth $\overline{5}$ \boldsymbol{c} iquared between SST and precipitation is also sitraseasonal band across the east Pacific warm I
traseasonal band across the east Pacific warm I
agging SST by a 1/4 phase (~10 days) when they a
ough at increasing lags towa **Doo** significant (0.3-
pool, with colo dted

Coherence
0.4) in the in
precipitation spatially, although at increasing lags toward the north. **0.4) in the intraseasonal band across the east Pacific warm pool Coherence squared between SST and precipitation is also significant (0.3** precipitation lagging SST by a 1/4 phase (~10 days) when they are colocated precipitat
patially,

easterly waves and tropical cyclones.

 δ $\overline{}$ Îш. Ω pensen

The MJO-rel
variations ir
latent heat f
this region. **this region. variations in latent heat flux during MJO events. In fact, The MJO-related variations in wind speed contribute to latent heat flux anomalies are primarily wind-driven over** related variations in wind speed contribute to
in latent heat flux during MJO events. In fact,
it flux anomalies are primarily wind-driven ove

Analysis of June-October Intraseasonal SST Analysis Q_t June October Intras **Basona** $\boldsymbol{\omega}$ \overline{O}

boreal summer. significant 50 day peak over the east Pacific warm pool during A spectral analysis using eight years of TMI SST data indicates a Only the climatological seasonal cycle was removed A spectral analysis using eight years of TMI SST data indicates a
significant 50 day peak over the east Pacific warm pool during
boreal summer. Only the climatological seasonal cycle was removed
before the spectra were com explains a large fraction of the intraseasonal SST variance in this before the spectra were computed. As will be shown below, the MJO

of convection to the a
during periods of MJO Surface MJO westerly (easterly) anomalies are associated with an enhancement
(suppression) of convection over the warm pool, and a suppression (enhanceme
of convection to the east of 110°W (see below left). ^{Wind jets appe} during periods of MJO easterly anomalies (not shown). **of convection to the east of 110 (suppression) of convection over the warm pool, and a suppression (enhancement) Surface MJO westerly (easterly) anomalies are associated with anW (see below left).** Wind jets appear to be active **enhancement**

> **support MJO convection over the east Pacific warm suggesting that wind-evaporation feedback may help significant coupling between latent heat flux and An analysis from TAO buoys and TRMM indicates a pool during summertime. precipitation over the east Pacific warm pool (see left),** crecipitation o
suggesting tha
suggesting tha
support MJO c An analysis fro
Significant cou **OOLL MJC** is from TAO buoys and TRMM indicates a
i coupling between latent heat flux and
ion over the east Pacific warm pool (see left),
ig that wind-evaporation feedback may help
IJO convection over the east Pacific warm summertime

warm pool during summertime, gneratedA significant 50-day intraseasonal spectral peak in SST occurs in the east Pacific easterly wave and tropical cyclone activity. destructively to the climatologicalprecede MJO precipitation anomalies by 5-10 days. sasterly significant 50-d.
varm pool during $\overrightarrow{0}$ **S** ဂ En **oC over the east Pacific warm pool during an MJO lifecycle. SST anomalies** malle $\frac{1}{2}$ NBM Ver th $\vec{0}$ ဝံ ဖွ $\mathbf \Phi$ D \mathbf{F} ecip **Vay** $\boldsymbol{\omega}$ \Rightarrow intraseasonal spectral peak in SST occurs in the east Pacific
ummertime, gnerated in large extent by the MJO. SSTs vary by up
Pacific warm pool during an MJO lifecycle. SST anomalies
itation anomalies by 5-10 days. **wind field, and by 2) MJO-induced variations in in large extent by the MJO. SSTs vary by up**

about 1/8 of a cycle (~5 days). Interestingly, no coherence occurs between warm SSTs within the warm pool, SSTs north of 14 While phase vectors broadly indicate an in-phase relationship for intraseasonal coherence squared is significant and exceeds 0.4 across much of the warm pool. **during summertime. SSTs in the 30-90 day band are coherent across the east Pacific warm pool** Maloney and Kiehl (2002) who used Reynolds SST data. pool and equatorial SST in the intraseasonal band, contradictinguwn \overline{S} uared is significant and exceeds 0.4 across much of the warm
vectors broadly indicate an in-phase relationship for intraseaso
oe warm pool, SSTs north of 14ºN tend to lag those to the sout
cycle (~5 days). Interestingly, n 0-90 c
ertim Č qay band ne. Usin
is signi
s broad Using a reference SST time series was at 9 lug **d are coher**
I a reference **Prent across** for a series of the series of SCT time series of SCT time series of the series of the series of \sim $\mathbf \Phi$ N tend to lag those to the south by Seri eus $\boldsymbol{\Phi}$ ast : Pacific
s at 9ºN, the results of N, 92 varm pool.
easonal
south by W, o warm
s of

6. Conclusions

A full reference list can be found in Maloney and Esbensen (2006), in press in

Maloney and Esbensen (2006), in pres

can be found in

Monthly

6. Conclusions
Satellite and buoy da
wind variations over
supported by wind-i **anomalies are generated both by 1) vector mean winds adding constructively or supported by wind-induced latent heat flux variability. These latent heat flux wind variations over the east Pacific warm pool during June-October that are Satellite and buoy data show that the MJO is associated with strong precipitation and** Ω lata show that the MJO is associated with strong precipitation and
r the east Pacific warm pool during June-October that are
induced latent heat flux variability. These latent heat flux
rated both by 1) vector mean winds a

*Weather Review***.**

JII reference list (
ather Review.

A full
Weat*l*

We would like to thank the NOAA Climate Prediction Program for the Americas within the Climate Program Office

 $\mathbf{\tau}$ **Gou**

im Office

(Grant# NA05OAR31006) for support of this research. The statements, findings, conclusions, and

NOAA Climate Prediction Program for the Americas within the Climate
for support of this research. The statements, findings, conclusions, and
lecessarily reflect the views of NOAA, or the Department of Commerce.

recommendations do not necessarily reflect the views of NOAA, or

We would like to thank the
(Grant# NA05OAR31006)
recommendations do not r

the Department of Commerce.

Wind speed over the warm pool is
enhanced during periods of MJO westerly
anomalies and enhanced precipitation, wi
suppression of wind speed during MJO
easterly periods (see above). **easterly periods (see above). suppression of wind speed during MJO anomalies and enhanced precipitation, with enhanced during periods of MJO westerly Wind speed over the warm pool is xith**
with

Wind speed anomalies associated with t
MJO appear to be caused both by
intraseasonal vector wind anomalies adc
to the climatological southwesterly flow,
and by variations in eddy activity, includ
easterly waves and tropica **to the climatologicalWind speed anomalies associated with the intraseasonal vector wind anomalies added MJO appear to be caused both by southwesterly flow,** ldded the

For example, the suppression of wind speed
during MJO easterly periods appears to be
about equally due to easterly anomalies add
to the climatological southwesterly flow and
suppression of eddy variance (see left). suppression of eddy variance (see left). to the climatologicalabout equally due to easterly anomalies added during MJO easterly periods appears to be For example, the suppression of wind speed southwesterly flow and added
and σ

Intraseasonal Precipitation vs. TAO Buoy Latent Heat Flux

TAO

Buoy

Latent
He

 \ddot{a}

Flux

NS.

Precipitation

Intraseasonal

$\mathbf{\hat{S}}$ **3. Analysis of Intraseasonal SST Analysis** of Intraseasonal **1SS**

A lag
indica the MJO index, the implications of which will become apparent below. **the east Pacific warm pool during June-October (see below). A lag correlation between the MJO index (multiplied by -1) and intraseasonal SST** important factor in controlling east Pacific warm pool SST during summertime.**indicates that the MJO index explains about 40% of the intraseasonal SST variance in** the east P portant
e MJO ir **J COITE ation**
ates that the ្ម
ខ σ etween the MJO index (multiplied by -1) and intraseasonal SST
MJO index explains about 40% of the intraseasonal SST variance
rm pool during June-October (see below). Thus, the MJO is an
ontrolling east Pacific warm pool SS Thus, the MJO is an SST leads $\overline{5}$

 $\widehat{\pi}$

 $\ddot{\mathbf{O}}$

ာ \sim

 \forall

Eddies

والأحاجاء

ويؤمنون

N_O

 \circ

SON

(Composite)

ξ

M06

level westerly flow (e.g. Maloney and SobelRecent modeling work also suggests that wind-evaporation
feedback supports MJO convection in this region (Maloney
and Esbensen 2005), and is consistent with the more
generalized view that wind-evaporation feedback supports MJO convection across the Tropics in regions of mean lowgeneralized view that wind-evaporation feedback supports and Esbensen 2005), and is consistent with the more feedback supports MJO convection in this region (Maloney Recent modeling work also suggests that wind-evaporation

N. **2. Analysis of the June-October MJO Analysis of the June** October MJO

We conduct an analysis of the MJO in the east Pacific warm pool during June-
1998-2005 using satellite and buoy data. Enhanced TAO array measurements
for EPIC2001 were available from 2000-2004. for EPIC2001 were available from 2000-2004. We conduct an analysis of the MJO in the east Pacific warm pool during June-October of 1998-2005 using satellite and buoy data. Enhanced TAO array measurements associated -October c
s associate of
dgd

Intraseasonal SST variations in the east Pacific will be related

 to the MJO

using the tropical equatorial MJO index of Maloney and Kiehl (2002).

The

MJO index, as described in Maloney and Kiehl (2002).

are linearly combined to form an

The principal components of the leading EOFsHemisphere, substantial zonal wind variance also is captured in the east Pacific. right). Although peak variance for these EOFsrepresent a quadraturepair that defines the eastward propagating MJO (see leading EOFsof the 30-90 day equatorial averaged 850 hPa

occurs in the Eastern

zonal wind

to show that intraseasonal SST anomalies of even lesser magnitude than shown below variations.the response is apparent, with warm SST anomalies that precede enhanced convection are likely important for producing realistic MJO convective variability . index.convection. This asymmetry is similar if being stronger and more widespread than the corresponding cold anomalies after **peak variations in SST can be as high as 1 (negative) SST anomalies by 5-10 days over the warm pool (see below). Peak to significant events. Suppressed (enhanced) convection typically precedes positive** Significant MJO
composite MJO **composite MJO event is created (as a function of lag in days) bySignificant MJO events are defined as maxima of the index exceeding 1** composite MJ
ignificant ev
inegative) SS
peak variation
he response is b show that intrase
re likely important nvection. Precipitation anomalies west of 110 Maloney and Kiehl (2002) used an atmospheric GCM coupled to a slab ocean events are defined using minima of the MJO o W are not associated with strong SST **oC over an MJO lifecycle. averaging these** An asymmetry in σ, **and a**

NJO Compo