MID-LEVEL AND DEEP CONVECTIVE CLOUD CHARACTERISTICS **ACROSS THE TROPICAL PACIFIC**

Michael P. Jensen, Andrew M. Vogelmann, and Edward Luke

Brookhaven National Laboratory, Upton, NY

Figure 3-5 ELNB for each sounding (+)

Corresponding author: Mike Jensen, mjensen@bnl.gov, (631) 344-7021

Study Regions

EPIC oceanic. ITCZ [0 – 15° N / 95 – 115° W] Darwin land/island, monsoon [7 - 17° S / 126 - 136° E] Nauru oceanic, descending Walker [0 – 15° N / 160 – 180° E]

Factors limiting mid-level congestus cloud top heights

sen. M.P. and A. D. Del Genio, 2006: Fa nate Research Facility. J.Clim., 19 2105-2117

· For Nauru and Manus convection it is clear that mid-level humidity plays the more critical role in limiting deep convective cloudtop heights compared to freezing level stability

• In the EPIC ITCZ region both the mid-level humidity and freezing level stability are important limiting factors, more cases are needed to verify this result

Deep convective cloud characteristics from MODIS observations

MODIS Cloud data acquisition,

• MODerate Imaging Spectroradiometer 36 spectral bands from 0.4 -14 .4 μm 2330 km swath

horizontal resolution 250-1000m MODIS team retrieves cloud physical and radiative properties Terra (1030 LT) and Aqua (1330 LT)

Cloud identification algorithm

The Lagrangian algorithm used here is similar to the Detection and Spread (DAS) algorithm by er and Ramanathan (1997). • The algorithm detects convective cloud elements and associates neighboring cloud pixels with each convective element through a type of successive relaxations;
each convective element through a type of successive relaxations;
we identify several tens of thousands of clouds systems for each region, and determine MODIS
observed cloud mean quantities for: Optical Depth, Liquid Water Path, Effective Radius, IR
Brightness Temperature, Cloud-Top Pressure.

280

220

200

180

10

INVERTICATION (Ter

thicker, large

Aqua (PM) – More optically thin anvil cloud

Difficult to quantify AM/PM

differences in EPIC region

Terra (AM) -Deeper, thicker anvil cloud

Aqua (PM) – larger

Terra (AM) – smaller particles regardless of

particles, more

precip?

parti TBB

incy [EPIC Terra-Aqua

Initial Conclusions • We are able to identify clear differences in deep convective cloud properties for different regions of the tropics Compared to the EPIC region, Nauru cloud systems tend to be: - Warmer

Optically thinner

larger cloud particles