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The Trace Organic Gas Analyzer (TOGA)

Eric Apel (PI), Alan Hills, Rebecca Hornbrook (ACD/NESL/NCAR)
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VOCs needed to understand chemistry leading to trop O, NSF/NCAR Gulfstream V

and aerosols. Halogenated species can impact both trop

and lower strat

Designed specifically for the G-V

DC3 and NOMADSS
Designed to have very low LOD ppt to sub — pptv
detection limits, over 70 VOC measured simultaneously
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Atmospheric Chemistry Considerations

The photochemical budget of O; in the tropical TTL is determined by the
strength of inputs of chemical precursors from convection and lightning.

0,, H,0, CO, CH,, NO,, hv — allow for model estimates of odd oxygen
and HO,

But...VOCs can also supply HO,
. Species that photolyze — e.g., acetone, HCHO

Oxygenated VOC photolysis increases HOx levels and promotes the
formation of PAN in the UT, altering O, photochemistry.

Previously: Measurements of OH in tropical UT demonstrated that
the HOx source from the reaction of O!D with H,0 is insufficient to
explain the concentrations of this radical. Acetone suggested as a
possible source of some of the missing OH (Wennberg et al., 1998).



Tropical Ocean tRoposphere Exchange of Reactive halogen species

and Oxygenated VOC
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The scientific objective of the TORERO project was
to study the release and transport of halogenated

Pacific during the season of high biologic
productivity.
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TORERO VOC Data



TORERO Acetone Data Example
RFO5
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TORERO Research Flight 5
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Acetonitrile, pptv
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n-butane, benzene, pptv

Measurements of OVOC precursors: very low —
confirms little continental influence
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Three-dimensional back-trajectory calculations are used to construct reverse domain-
filled (RDF) fields along aircraft flight tracks by sampling RAQMS along the back-

trajectories following Fairlie et al., [2007]. (Courtesy of B. Pierce)




TORERO TOGA Measurements

Anthropogenic (BB) compounds — Tracers from over ocean-only data

Note low MRs of species — very little overall anthro /BB influence

Butanes T~ week, Benzene ~ 1 month
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Altitude, km

Long-lived semi-soluble species

Methanol ~ 10 days, biogenic, BB, anthro, photochem

CH;CN ~ months, BB (not much here)

Acetone ~ 1 month (14 days)

MEK ~ 10 days
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TORERO TOGA Measurements
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Biogenic compounds from ocean — impact on SOA etc.
very little isoprene observed in this study (TORERO) from oceans

Open question: 8 Tg/yr global source of organic marine aerosol (Spracklen et
al., 2008)

Virtually no terpenes observed —very low MRs
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Short-lived OVOCs

Aldehydes — formaldehyde — many sources incl. methane, methanol, MeOOH, CH,CHO, etc

Others — all have short lifetimes

Formaldehyde Acetaldeyde Propanal Butanal



CONTRAST Hypothesis: CH,Br,, CHBr;, and other VSL bromocarbons will
be elevated in air parcels that have undergone recent deep convection.

The low O, environment of air undergoing recent, deep convection
will increase the atmospheric lifetime of halocarbons lost by reaction
with OH

Table 1. Lifetime at5 km, 275 K

Chemical ToH (days) Ty (days) TToTAL (days)
CHBr, 100 36 26
CH,Br, 120 5000 120

CH-Br(Cl 150 15000 150




TORERO TOGA Organohalogen Measurements
Ultra-high sensitivity needed to 100 -
investigate some chemical ]
processes such as the inorganic
halogen/organo-halogen species
— parts per quadrillion sensitivity
required (see Carpenter, Atlas,
etc.)
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Relatively stable organic halogens such

0.0
1O as bromomethane, bromoform (CHBr,) & & @ & & @
- : S & & & & & &
and dibromomethane (CH,Br,), emitted & &S
predominantly from the oceans, can @0& 0@& @0& o@@ & z?& bo@
; RN~ B &
. impact the MBL and be transported to L RO
}g the lower stratosphere and make a & &69 ©
g contribution to total bromine levels and
= thus to stratospheric ozone depletion. Compound
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Build on previous studies
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DMS

Fig. 1. Modeled annual mean DMS sea surface concentration. Units are nmol/l.

Kloster et al., 2005, Biogeosciences Discussions
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Impact of convection on brominated VSLS and methyl iodilde _|DMS| as proxy
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P Altitude, km

2012 DC-3 Campaign

TOGA CH2Br2
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DC3 2013 June 21 MCS Flight - Following the photochemistry after convection

Flight tracks
During the DC3 experiment we had the ‘
exceptional opportunity to study the
outflow from an MCS (mesoscale
convective system). N
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The highly instrumented GV aircraft
followed the highly instrumented DC8
aircraft in a daylong study of the
outflow from the previous night’s MCS.
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GV Measurements: \/OCs — TOGA (Apel, Hills, Hornbrook, NCAR/ACD; Riemer, U. Miami), O, (Campos, NCAR/ACD), Formaldehyde (Fried, NCAR/EOL)
DC8 Measurements: \/OCs - Whole air sampler (Blake, UC-Irvine); O, (Ryerson, NOAA), Formaldehyde (Fried, NCAR/EOL)
NCAR Master Mechanism: Detailed 0-D model — Chemistry — Apel, Lee-Taylor, Madronich (NCAR/ACD)



Summary

TOGA VOC measurements will complement WAS +
others and provide measurements for OVOC
species as well at 2 min time resolution



