

An Autonomous, Inexpensive, and Robust CO₂ Analyzer (AIRCOA)

NCAR

Overview: We present our design of a new autonomous, inexpensive, and robust CO₂ analyzer (AIRCOA), a description of our quality control procedures, and data examples from ongoing deployments (see companion poster). Our current AIRCOA units require less than \$10K (USD) in components, show intercomparability better than 0.1 ppm during laboratory tests and 0.2 ppm in the field, and are designed to run autonomously for months at a time. We are working closely with other investigators developing and deploying similar single-cell IRGA based systems, as well as investigators deploying longer-established but more expensive technologies, in an effort to improve the intercomparability between independent observing networks.

Panel 2	Potential	sources of	f measuremen [.]	t error	and Δ
raiiti Z.	FUlentiai	3001063 0	ιπεαδαιεπιεπ		anu A

Measurement concern	Approach		
Short-term IRGA noise	Average for 2 minu		
Drift in IRGA sensitivity	4-hourly 4-point cal		
IRGA pressure sensitivity	Automated 4-hourly		
IRGA temperature sensitivity	30-minute 1-point c temperature-variab		
Incomplete drying of air	Slow enough flow (humidity sensor to		
Drying system altering CO ₂	Continuous flows a gas through entire		
Incomplete flushing of cell and dead volumes	Fast enough flow (' high / high-to-low to		
Leaks through fittings, solenoid valves, and pumps	Automated 8-hourly pressure leak-up cl		
Different pressure broadening with and without Ar	Use calibration gas		
Fossil CO ₂ in calibration gases and different field and lab ¹³ C sensitivities	Laboratory tests linute use cylinders with r		
Regulator temperature effects	Laboratory oven tea regulator depender		
Whole-system diagnostics and comparability verification	Long-term surveilla other programs, rot		

National Center for Atmospheric Research, Earth Observing Laboratory and The Institute for Integrative and Multidisciplinary Earth Studies, Boulder, Colorado, USA

Britton Stephens (stephens@ucar.edu), Andrew Watt, and Gordon Maclean

Panel 3. Near real-time data viewing and diagnostic checking

Regulator temperature effect Lab comparisons

LS2, HS1, and HS2 Temperatu

257.5 Day of Year (GMT)

