I. Preflight
A. Day(s) before flight
 Date (YYMMDD) = __________
 1) Prepare new traps w/ clean beads filled to 3" below edge and bring to plane
 2) Install new traps
 Upstream: ___ Downstream: ___
 3) Load flasks, confirm old and record new flask IDs, and inspect o-rings
 4) Record Flask Box Numbers: Box #1: 06 Box #2: 15
 5) Install flask box retaining pins
 6) Connect plumbing. Confirm lines are correctly installed with red label up
 7a) Replace cover shields and 7b) complete rack book
 8) Record flask IDs into an Excel file on laptop (MED_YYMMDD_RF##.xls)
 9) If necessary, download data from previous flight to laptop and pen drive
 10) Check that flask table is clear. If not, “clear all”
 11) Complete flask leak check procedure #1 Start UTC __ : ___
 12) Wait as long as possible, 1-hour preferred, then complete flask leak check
 procedure #2 Start UTC __ : ___
 13) Pull bypass pressure down (PC2 open), then pumps off and PC2 closed
 14) Record Ps: Pup ___ Pdown ___ Pbypass ___ then all power off

Flask ID Table (View from Front of Box)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>5</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>11</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>9</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>24</td>
<td>25</td>
<td>32</td>
</tr>
<tr>
<td>18</td>
<td>23</td>
<td>26</td>
<td>31</td>
</tr>
<tr>
<td>19</td>
<td>22</td>
<td>27</td>
<td>30</td>
</tr>
<tr>
<td>20</td>
<td>21</td>
<td>28</td>
<td>29</td>
</tr>
</tbody>
</table>

B. 2-hours before take-off.: Dry ice and Sampler Set-up
 1) Load dry ice into dewar 0.5" from lid
 2) Ensure that MEDUSA valve control key is in place
 3) 28 V breaker on, Valve box on, Main breaker on
 4) Record P / Δ: Pup ___ / ___ Pdown ___ / ___ Pbypass ___ / ___
 5) Sync MEDUSA clock with clock on laptop +/- 1 sec
 MEDUSA time UTC 14 : 44 : 08 Laptop time UTC 14 : 44 : 08
6) Connect traps
7) Ensure VLV1 = 1, VLV2 = 1, VLV3 = odd, bypass on, pumps off
8) Open all flask stopcocks 2 half turns
Flasks opened by:
9) Re-install splinter shields and complete rack book

10) Confirm P upstream, P downstream, prepurge T, and min flush T settings
P upset ____ P downstream ____ prepurge T ____ flush T ____
11) Verify that no values are blinking on screen
12) Note trap temperature
Trap T:
13) Complete bypass / system leak check
14) Ensure both controllers are to auto
15) Turn pumps on
16) Verify pressures are controlling and flow is as expected
P upset ____ P downstream ____ P bypass ____ Flow ____
17) If necessary, "Clear All" (after being sure data from last flight copied)
18) Pump breaker off (PB and VB stay on)

II. In flight
A. Immediately after take-off
Take-off time UTC 13:04:58
1) Turn pump breaker on
2) Verify pressures/flows agree with previous values from I.B.16.
P upset 350 P downstream 350 P bypass 350 Flow 4800
3) Verify that Vstat2, CO2, and H2O are all reading correctly and no values
blinking on screen. If sampling schedule allows, let CO2 and H2O stabilize
4) Start pre-purge
UTC:
5) Note trap temperature
Trap T:
6) Record png of prepurge: (YYMMDD_r##_prepurge) File:

B. Sample 45 secs after desired altitude at 3 SLPM (1:15 at 1.8 SLPM), and record
values in chart below (nominal kft = 1, 5, 10, 15, 21, 28, 36, and 46)

<table>
<thead>
<tr>
<th>Pos</th>
<th>Flow (V)</th>
<th>Psa (torr)</th>
<th>PC Setpts</th>
<th>End Time</th>
<th>PALTF</th>
<th>Profile #</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) After sampling flask 16, close flasks 1-16
UTC:

2) Note trap temperature

<table>
<thead>
<tr>
<th>Pos</th>
<th>Flow (V)</th>
<th>Psa (torr)</th>
<th>P Setpts</th>
<th>End Time</th>
<th>PALTF</th>
<th>Profile #</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3) After sampling flask 32, close flasks 17-32

4) Note trap temperature

UTC: ___ : ___
Trap T: ___

III. At the end of the sampling

1) Turn Pumps breaker off
2) Turn Mains breaker off
3) Turn valve box breaker off
4) Turn 28V breaker off
5) Ensure all flask valves closed

UTC: ___

IV. Post-flight

1) Remove traps
2) Plug holes in dewar lid
3) Download flask sampling data to laptop and pen drive
4) Empty beads from upstream trap into ‘wet’ bead container to dry
5) Open downstream trap and set upright
6) `ftp *.tab, and MED_*_Notes.txt files for this flight to the ao2raw directory on catalog.eol.ucar.edu (or email if ftp does not work)
7) email a scan of this checksheet to BBS (or fax if scanner not available)

V. Day after flight

1) Transfer beads from downstream trap into upstream trap
2) Unload flasks. Box #1: _____ Box #2 _____
MEDUSA leak check procedures

Flask Leak Check Procedure #1:

1. 28 V breaker on, Valve box on, Pump box on
2. Ensure Box #1 = 1, Box #2 = 1, 6-way = odd, Bypass on
3. Pup Ctrl Closed, Pdn Ctrl Open, Pump On - pull down bypass line for 1 minute
4. If necessary, “Clear All” (after being sure data from last flight secure on laptop)
5. Adjust prepurge time to 20 seconds
6. Toggle between bypass on/off 6 times over 1-min to pull PSA down to < 200
7. Run 20-second prepurge to evacuate lines. Start: Finish:
8. Save PNGs of AEROS P,Flow/Stat to laptop (YYMMDD_RF##_Leakcheck1.png)
9. Close Pdn, turn pumps off (will leave in position 1)
10. Turn bypass on

Flask Leak Check Procedure #2:

1. “Clear All”
2. Valve box off, main breaker off then on to reset, then valve box back on
3. Ensure AEROS is running with MEDP1,MEDP2, MED_Psa, MEDPBYP recording
4. Open Pdn, turn pumps on and evacuate sample and bypass (toggle 6 times).
5. Close Pdn and turn pumps off
6. Adjust prepurge time to 20 seconds
7. Run 20-second prepurge to check all flask downstream tube Ps
8. Record times for AEROS matching. Start: Finish:
9. Save PNGs of AEROS P/Flow/Stat to laptop (YYMMDD_RF##_Leakcheck2.png)
10. Turn bypass on

Bypass / System Leak Check Procedure:

1. Ensure bypass on, close PC1 and open PC2
2. Turn on pump breaker and let run for 1 minute
3. Verify Pup ~ 10, Pdown ~ 160, Pbypass ~ 160
4. Switch PC2 to closed and turn off pump
5. Wait 15 seconds and note Pu, Pd, Pb in table below
6. After 1 minute, record values again.
7. After 5 minutes, record values again
8. If Pdown and Pbypass <2 torr/5 mins, skip to 11
9. If values are not ok, turn PC1/PC2 to auto, run gas for 15 seconds, close PC2 for 1 second, and then shut off pump to pressurize system in bypass. Snoop trap fittings, and fittings between and to boxes, and fix/tighten as necessary
10. Return PC1 and PC2 to auto

<table>
<thead>
<tr>
<th>Time (UTC)</th>
<th>Pup</th>
<th>Pdn</th>
<th>Pbypass</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NCAR/SCRIPPS MEDUSA Checklist
Date (YYMMDD): 10609 From-To: B3C - 952 (via TW)
V. 2011.06.06

I. Preflight
A. Day(s) before flight
 ✓ 1) Prepare new traps w/ clean beads filled to 3\textquotedbl} below edge and bring to plane
 ✓ 2) Install new traps
 ✓ 3) Load flasks, confirm old and record new flask IDs, and inspect o-rings
 ✗ 4) Record Flask Box Numbers: Box #1 ___ Box #2 ___
 ✓ 5) Install flask box retaining pins
 ✓ 6) Connect plumbing. Confirm lines are correctly installed with red label up
 ✓ 7a) Replace cover shields and ___ 7b) complete rack book
 ✓ 8) Record flask IDs into an Excel file on laptop (MED_YYMMDD_RF##.xls)
 ✗ 9) If necessary, download data from previous flight to laptop and pen drive
 ✗ 10) Check that flask table is clear. If not, “clear all”
 ✗ 11) Complete flask leak check procedure #1 Start UTC ___
 ✗ 12) Wait as long as possible, 1-hour preferred, then complete flask leak check procedure #2 Start UTC ___
 ✗ 13) Pull bypass pressure down (PC2 open), then pumps off and PC2 closed
 ✗ 14) Record Ps: Pup ___ Pdown ___ Pbypass ___ then all power off

<table>
<thead>
<tr>
<th>Flask ID Table (View from Front of Box)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>17</td>
</tr>
<tr>
<td>18</td>
</tr>
<tr>
<td>19</td>
</tr>
<tr>
<td>20</td>
</tr>
</tbody>
</table>

B. 2-hours before take-off: Dry ice and Sampler Set-up
 ✓ 1) Load dry ice into dewar 0.5\textquotedbl} from lid
 ✓ 2) Ensure that MEDUSA valve control key is in place
 ✓ 3) 28 V breaker on, Valve box on, Main breaker on
 ✓ 4) Record $P/\Delta P$: Pup LH Pdown LH^2 Pbypass LH^2
 ✓ 5) Sync MEDUSA clock with clock on laptop +/- 1 sec
 MEDUSA time UTC LH^2 Laptop time UTC LH^2
II. In flight
A. Immediately after take-off
 1) Turn pump breaker on 16:37:00
 2) Verify pressures/flows agree with previous values from I.B.16.
 Pup 1800 Pdown 400 Pby 40 Flow 5000
 3) Verify that Vstat2, CO2, and H2O are all reading correctly and no values
 blinking on screen. If sampling schedule allows, let CO2 and H2O stabilize
 UTC 16:34:30
 4) Start pre-purge
 UTC 16:34:30
 5) Note trap temperature
 6) Record png of prepurge: (YYMMDD_rff##_prepurge) File: 110609_1f02_prepurge.png

B. Sample 45 secs after desired altitude at 3 SLPM (1:15 at 1.8 SLPM), and record
 values in chart below (nominal kft = 1, 5, 10, 15, 21, 28, 36, and 46)

<table>
<thead>
<tr>
<th>Pos</th>
<th>Flow (V)</th>
<th>Psa (torr)</th>
<th>PC Setpts</th>
<th>End Time</th>
<th>PALTF</th>
<th>Profile #</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.04</td>
<td>849</td>
<td>40/690</td>
<td>17:03:17</td>
<td>36</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4.07</td>
<td>843</td>
<td>40/690</td>
<td>17:13:46</td>
<td>40</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4.05</td>
<td>849</td>
<td>40/690</td>
<td>17:53:56</td>
<td>36</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4.04</td>
<td>834</td>
<td>40/690</td>
<td>17:53:04</td>
<td>22</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4.04</td>
<td>811</td>
<td>40/690</td>
<td>17:48:32</td>
<td>13</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4.06</td>
<td>812</td>
<td>40/690</td>
<td>17:54:02</td>
<td>6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4.03</td>
<td>814</td>
<td>40/690</td>
<td>17:57:47</td>
<td>45</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>5.44</td>
<td>943</td>
<td>180/400</td>
<td>18:36:11</td>
<td>5.5</td>
<td>2</td>
<td>S5502</td>
</tr>
<tr>
<td>9</td>
<td>5.5</td>
<td>946</td>
<td>180/400</td>
<td>18:40:48</td>
<td>18</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>5.5</td>
<td>943</td>
<td>180/400</td>
<td>18:45:04</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>5.5</td>
<td>943</td>
<td>180/400</td>
<td>18:24:09</td>
<td>1800</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>5.5</td>
<td>943</td>
<td>180/400</td>
<td>18:24:09</td>
<td>1800</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>5.5</td>
<td>943</td>
<td>180/400</td>
<td>18:24:09</td>
<td>1800</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>5.5</td>
<td>943</td>
<td>180/400</td>
<td>18:24:09</td>
<td>1800</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>5.5</td>
<td>943</td>
<td>180/400</td>
<td>18:24:09</td>
<td>1800</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>5.5</td>
<td>943</td>
<td>180/400</td>
<td>18:24:09</td>
<td>1800</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

1) After sampling flask 16, close flasks 1-16

UTC: 16:05
3) After sampling flask 32, close flasks 17-32

4) Note trap temperature

UTC: ___

Trap T: ___

III. At the end of the sampling

1) Turn Pumps breaker off

2) Turn Mains breaker off

3) Turn valve box breaker off

4) Turn 28V breaker off

5) Ensure all flask valves closed

IV. Post-flight

1) Remove traps

2) Plug holes in dewar lid

3) Download flask sampling data to laptop and pen drive

4) Empty beads from upstream trap into ‘wet’ bead container to dry

5) Open downstream trap and set upright

6) ftp *.tab, and MED_*. Notes.txt files for this flight to the ao2raw directory on catalog.eol.ucar.edu (or email if ftp does not work)

7) Email a scan of this checksheet to BBS (or fax if scanner not available)

V. Day after flight

1) Transfer beads from downstream trap into upstream trap

2) Unload flasks. Box #1: ___ Box #2 ___
MEDUSA leak check procedures

Flask Leak Check Procedure #1:

1. 28 V breaker on, Valve box on, Pump box on
2. Ensure Box #1 = 1, Box #2 = 1, 6-way = odd, Bypass on
3. Pup Ctrl Closed, Pdn Ctrl Open, Pump On - pull down bypass line for 1 minute
4. If necessary, “Clear All” (after being sure data from last flight secure on laptop)
5. Adjust prepurge time to 20 seconds
6. Toggle between bypass on/off 6 times over 1-min to pull PSA down to < 200
7. Run 20-second prepurge to evacuate lines. Start: __________ Finish: __________
8. Save PNGs of AEROS P, Flow/Stat to laptop (YYMMDD_RF##_Leakcheck1.png)
9. Close Pdn, turn pumps off (will leave in position 1)
10. Turn bypass on

Flask Leak Check Procedure #2:

1. “Clear All”
2. Valve box off, main breaker off then on to reset, then valve box back on
3. Ensure AEROS is running with MEDP1, MEDP2, MED_Psa, MEDPBYP recording
4. Open Pdn, turn pumps on and evacuate sample and bypass (toggle 6 times).
5. Close Pdn and turn pumps off
6. Adjust prepurge time to 20 seconds
7. Run 20-second prepurge to check all flask downstream tube Ps
8. Record times for AEROS matching. Start: __________ Finish: __________
9. Save PNGs of AEROS P, Flow/Stat to laptop (YYMMDD_RF##_Leakcheck2.png)
10. Turn bypass on

Bypass / System Leak Check Procedure:

1. Ensure bypass on, close PC1 and open PC2
2. Turn on pump breaker and let run for 1 minute
3. Verify Pup ~ 10, Pdown ~ 160, Pbypass ~ 160
4. Switch PC2 to closed and turn off pump
5. Wait 15 seconds and note Pu, Pd, Pb in table below
6. After 1 minute, record values again.
7. After 5 minutes, record values again
8. If Pdown and Pbypass < 2 torr/5 mins, skip to 9
9. If values are not ok, turn PC1/PC2 to auto, run gas for 15 seconds, close PC2 for 1 second, and then shut off pump to pressurize system in bypass. Snoop trap fittings, and fittings between and to boxes, and fix/tighten as necessary
10. Return PC1 and PC2 to auto

<table>
<thead>
<tr>
<th>Time (UTC)</th>
<th>Pup</th>
<th>Pdn</th>
<th>Pbypass</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:17:30</td>
<td>38</td>
<td>134</td>
<td>148</td>
<td></td>
</tr>
<tr>
<td>15:18:50</td>
<td>45</td>
<td>128</td>
<td>137</td>
<td></td>
</tr>
<tr>
<td>15:20:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:28:30</td>
<td>98</td>
<td>114</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td>15:33:30</td>
<td>102</td>
<td>114</td>
<td>124</td>
<td></td>
</tr>
</tbody>
</table>
NCAR/SCRIPPS MEDUSA Checklist

I. Preflight

A. Day(s) before flight

- Prepare new traps w/ clean beads filled to 2" up from the bottom and bring to plane
- Install new traps
- Load flasks, confirm old and record new flask IDs, and inspect o-rings
- Record Flask Box Numbers: Box #1 106 Box #2 115
- Install flask box retaining pins
- Connect plumbing. Confirm lines are correctly installed with red label up
- Replace cover shields and complete rack book
- Record flask IDs into an Excel file on laptop (MED_YYMMDD_RF##.xls)
- If necessary, download data from previous flight to laptop and pen drive
- Check that flask table is clear. If not, "clear all"
- Complete flask leak check procedure #1
- Wait as long as possible, 1-hour preferred, then complete flask leak check procedure #2
- Pull bypass pressure down (PC2 open), then pumps off and PC2 closed
- Record Ps: Pup ×, Pdown ×, Pbypass × then all power off

Flask ID Table (View from Front of Box)

<table>
<thead>
<tr>
<th>13</th>
<th>12</th>
<th>5</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1254</td>
<td>1385</td>
<td>1390</td>
<td>1039</td>
</tr>
<tr>
<td>1239</td>
<td>1274</td>
<td>1032</td>
<td>1298</td>
</tr>
<tr>
<td>1386</td>
<td>1270</td>
<td>1231</td>
<td>1047</td>
</tr>
<tr>
<td>1302</td>
<td>1184</td>
<td>1300</td>
<td>1345</td>
</tr>
<tr>
<td>1123</td>
<td>1161</td>
<td>1205</td>
<td>1028</td>
</tr>
<tr>
<td>1141</td>
<td>1021</td>
<td>1255</td>
<td>1034</td>
</tr>
<tr>
<td>1077</td>
<td>1349</td>
<td>1207</td>
<td>1318</td>
</tr>
<tr>
<td>1309</td>
<td>1175</td>
<td>1195</td>
<td>1356</td>
</tr>
</tbody>
</table>

Date (YYMMDD) = 110613
Start UTC 22:29:30

Didn't have time but did this earlier in deg => was...
B. 2 hours before take-off: Dry ice and Sampler Set-up

1) Load dry ice into dewar 0.5" from lid
2) Ensure that MEDUSA valve control key is in place
3) 28 V breaker on, Valve box on, Main breaker on
4) Record P / A: Pup \(2^{74} / \times \) Pdown \(\approx 351 / \times \) Pbypass \(\approx 347 / \times \)
5) Sync MEDUSA clock with clock on laptop +/- 1 sec

MEDUSA time UTC 14 : 34 : 30 Laptop time UTC 14 : 31 : 30

6) Connect traps if not already
7) Ensure VL V1 = 1, VL V2 = 1, VL V3 = odd, bypass on, pumps off
8) Open all flask stopcocks 2 half turns

- Flasks opened by: AWD
- 9a) Re-install splinter shields
9b) Complete rack book
10) Confirm P upstream, P downstream, prepurge T, and min flush T settings

Pupset 180 Pdownset 400 prepurgeT 500 min flushT 120

11) Verify that no values are blinking on screen

12) Note trap temperature
13) Complete bypass / system leak check
14) Ensure both controllers are to auto
15) Turn pumps on
16) Verify pressures are controlling and flow is as expected

Pup 180 Pdown 140 P bypass 502 Flow 4900

17) Adjust flight code to 1 (130/580/30) 150 580 30 3100
18) If necessary, “Clear All” (after being sure data from last flight copied)
19) Pump breaker off (PB and VB stay on)

II. In flight
A. Immediately after take-off

1) Turn pump breaker on
2) Verify pressures/flows agree with previous values from I.B.17.

Pup 130 Pdown 580 P bypass 140 Flow 3
3) Verify that Vstat2, CO2, and H2O are all reading correctly and no values
 blinking on screen. If sampling schedule allows, let CO2 and H2O stabilize
4) Start pre-purge
5) Note trap temperature

6) Record start of pre-purge: (YYMMDD_rf##_prepurge) File: 110614-rf01-prepurge

B. Sample 45 secs after desired altitude at 3 SLPM (1:15 at 1.8 SLPM), and record values in chart
 below (nominal kft = 1, 5, 10, 15, 21, 28, 36, and 46)

Whenever possible, favor flushing a flask as long as reasonable possible
If pilots ascend to over 41 kft on initial, switch to flight plan 3 (90/690/300) for at least the
top samples

After first dive (40 kft to 1000 ft) is finished, adjust flight plan to 2 (180/400/120)
<table>
<thead>
<tr>
<th>Pos</th>
<th>Flow (V)</th>
<th>Psa (torr)</th>
<th>PC Setpts</th>
<th>End Time</th>
<th>PALTF</th>
<th>Profile #</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.87</td>
<td>849</td>
<td>130/550</td>
<td>16:10:00</td>
<td>40</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4.87</td>
<td>849</td>
<td>130/550</td>
<td>16:51:03</td>
<td>40</td>
<td>1</td>
<td>closed@ 16:55:00</td>
</tr>
<tr>
<td>3</td>
<td>4.87</td>
<td>791</td>
<td>90/1690</td>
<td>17:05:41</td>
<td>40</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4.0</td>
<td>787</td>
<td>90/1690</td>
<td>17:14:33</td>
<td>40</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4.0</td>
<td>787</td>
<td>90/1690</td>
<td>17:21:23</td>
<td>40</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4.0</td>
<td>787</td>
<td>90/1690</td>
<td>17:27:05</td>
<td>40</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4.9</td>
<td>845</td>
<td>130/550</td>
<td>17:59:37</td>
<td>34.5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4.91</td>
<td>845</td>
<td>130/550</td>
<td>18:04:01</td>
<td>24.7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>4.91</td>
<td>845</td>
<td>130/550</td>
<td>18:07:56</td>
<td>13.5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>4.91</td>
<td>845</td>
<td>130/550</td>
<td>18:11:02</td>
<td>13.5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>4.91</td>
<td>845</td>
<td>130/550</td>
<td>18:14:06</td>
<td>7.6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>4.91</td>
<td>845</td>
<td>130/550</td>
<td>18:17:06</td>
<td>4.6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>4.91</td>
<td>845</td>
<td>130/550</td>
<td>18:23:42</td>
<td>3</td>
<td>1</td>
<td>closed F10-13 @ 18:27</td>
</tr>
<tr>
<td>14</td>
<td>4.91</td>
<td>845</td>
<td>130/550</td>
<td>19:03:15</td>
<td>11.2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>4.91</td>
<td>845</td>
<td>130/550</td>
<td>19:33:25</td>
<td>18.4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>4.91</td>
<td>845</td>
<td>130/550</td>
<td>19:37:08</td>
<td>22.3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>4.91</td>
<td>845</td>
<td>130/550</td>
<td>19:41:51</td>
<td>29.5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>4.91</td>
<td>845</td>
<td>130/550</td>
<td>19:46:20</td>
<td>37.4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>4.91</td>
<td>845</td>
<td>130/550</td>
<td>19:52:17</td>
<td>40.0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>4.91</td>
<td>845</td>
<td>130/550</td>
<td>19:05:11</td>
<td>40.0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>4.91</td>
<td>845</td>
<td>130/550</td>
<td>19:24:45</td>
<td>40.0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4.91</td>
<td>845</td>
<td>130/550</td>
<td>19:33:07</td>
<td>34.5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>4.91</td>
<td>845</td>
<td>130/550</td>
<td>19:49:35</td>
<td>24.5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>4.91</td>
<td>845</td>
<td>130/550</td>
<td>19:59:15</td>
<td>19.0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>4.87</td>
<td>865</td>
<td>130/550</td>
<td>19:47:10</td>
<td>13.2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>4.87</td>
<td>865</td>
<td>130/550</td>
<td>19:55:01</td>
<td>7.0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>4.87</td>
<td>865</td>
<td>130/550</td>
<td>19:59:57</td>
<td>4.1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>4.87</td>
<td>865</td>
<td>130/550</td>
<td>20:06:32</td>
<td>3.1</td>
<td>3</td>
<td>closed F26 20:12:00</td>
</tr>
<tr>
<td>29</td>
<td>4.87</td>
<td>865</td>
<td>130/550</td>
<td>21:21:46</td>
<td>40</td>
<td>4</td>
<td>closed F27 @ 21:33:30</td>
</tr>
<tr>
<td>30</td>
<td>4.87</td>
<td>865</td>
<td>130/550</td>
<td>21:29:09</td>
<td>31.6</td>
<td>4</td>
<td>closed F30 @ 21:24:45</td>
</tr>
<tr>
<td>31</td>
<td>4.87</td>
<td>865</td>
<td>130/550</td>
<td>21:34:29</td>
<td>22.2</td>
<td>4</td>
<td>closed F31 @ 21:35:30</td>
</tr>
<tr>
<td>32</td>
<td>4.87</td>
<td>865</td>
<td>130/550</td>
<td>21:39:18</td>
<td>12.3</td>
<td>4</td>
<td>closed F32 @ 21:40:00</td>
</tr>
</tbody>
</table>

1) After sampling flask 16, close flasks 1-16

UTC: 18:38:20

2a) Turn Pump off
2b) Replace upstream trap
2c) Turn pump back on

3) After sampling flask 32, close flasks 17-32

UTC:

Trap T: ___________
III. At the end of the sampling
 ✔️ 1) Turn Pumps breaker off
 ☐️ 2) Ensure all flask valves closed

UTC 21:39

IV. Post-flight
 1) Remove traps
 2) Plug holes in dewar lid
 3) Download flask sampling data to laptop and pen drive
 4a) Turn off Mains breaker 4b) Valve box breaker 4c) 28V breaker
 5) Empty beads from upstream trap into ‘wet’ bead container to dry
 6) Open downstream trap and set upright
 7) ftp *.tab, and MED_*_Notes.txt files for this flight to the ao2.raw directory on catalog.eol.ucar.edu (or email if ftp does not work)
 8) email a scan of this checksheet to BBS (or fax if scanner not available)

V. Day after flight
 1) Transfer beads from downstream trap into upstream trap
 2) Unload flasks. Box #1: ✔️ 7 Box #2: ☐️ 7
MEDUSA leak check procedures

Flask Leak Check Procedure #1:

- 1) 28 V breaker on, Valve box on, Pump box on
- 2) Ensure Box #1 = 1, Box #2 = 1, 6-way = odd, Bypass on
- 3) Pup Ctrl Closed, Pdn Ctrl Open, Pump On - pull down bypass line for 1 minute
- 4) If necessary, “Clear All” (after being sure data from last flight secure on laptop)
- 5) Adjust prepurge time to 20 seconds
- 6) Toggle between bypass on/off 6 times over 1-min to pull PSA down to < 200
- 8) Save PNGs of AEROS P/Flow/Stat to laptop (YYMMDD_RF##_Leakcheck1.png)
- 9) Close Pdn, turn pumps off (will leave in position 1)
- 10) Turn bypass on

Flask Leak Check Procedure #2:

- 1) “Clear All”
- 2) Valve box off, main breaker off then on to reset, then valve box back on
- 3) Ensure AEROS is running with MEDP1,MEDP2, MED_Psa, MEDPBYP recording
- 4) Open Pdn, turn pumps on and evacuate sample and bypass (toggle 6 times).
- 5) Close Pdn and turn pumps off
- 6) Adjust prepurge time to 20 seconds
- 7) Run 20-second prepurge to check all flask downstream tube Ps
- 9) Save PNGs of AEROS P/Flow/Stat to laptop (YYMMDD_RF##_Leakcheck2.png)
- 10) Turn bypass on

Bypass / System Leak Check Procedure:

- 1) Ensure bypass on, close PC1 and open PC2
- 2) Turn on pump breaker and let run for 1 minute
- 3) Verify Pup ~ 10, Pdown ~160, Pbypass ~160
- 4) Switch PC2 to closed and turn off pump
- 5) Wait 15 seconds and note Pu, Pd, Pb in table below
- 6) After 1 minute, record values again.
- 7) After 5 minutes, record values again
- 8) If Pdown and Pbypass <2 torr/5 mins, skip to 11
- 9) If values are not ok, turn PC1/PC2 to auto, run gas for 15 seconds, close PC2 for 1 second, and then shut off pump to pressurize system in bypass. Snoop trap fittings, and fittings between and to boxes, and fix/tighten as necessary
- 10) Return PC1 and PC2 to auto

<table>
<thead>
<tr>
<th>Time (UTC)</th>
<th>Pup</th>
<th>Pdn</th>
<th>Pbypass</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:46:10</td>
<td>3</td>
<td>151</td>
<td>161</td>
<td></td>
</tr>
<tr>
<td>14:46:30</td>
<td>8</td>
<td>151</td>
<td>161</td>
<td></td>
</tr>
<tr>
<td>14:51:10</td>
<td>15</td>
<td>50</td>
<td>160</td>
<td></td>
</tr>
</tbody>
</table>
Plot standardizations

Flight:
- MCPBY: 1100
- MDPKA: 500
- MEDSTAT1: 2
- MEDFLW: 7
- MEDPT1: 700
- MEDPT2: 0

Leakchecks

Presures
NCAR/SCRIPPS MEDUSA Checklist

V. 2011.06.12

I. Preflight

A. Day(s) before flight

Date (YYMMDD) = 110615

1) Prepare new traps w/ clean beads filled to 2” up from the bottom and bring to plane

2) Install new traps

3) Load flasks, confirm old and record new flask IDs, and inspect o-rings

4) Record Flask Box Numbers: Box #1 117 Box #2 101

5) Install flask box retaining pins

6) Connect plumbing. Confirm lines are correctly installed with red label up

7a) Replace cover shields and 7b) complete rack book

8) Record flask IDs into an Excel file on laptop (MED_YYMMDD_RF##.xls)

9) If necessary, download data from previous flight to laptop and pen drive

10) Check that flask table is clear. If not, “clear all”

11) Complete flask leak check procedure #1

Start UTC 19:06

12) Wait as long as possible, 1-hour preferred, then complete flask leak check procedure #2

Start UTC 20:09

13) Pull bypass pressure down (PC2 open), then pumps off and PC2 closed

14) Record Ps: Pup 2 198 Pdown 198 Pbypass 182 then all power off

Flask ID Table (View from Front of Box)

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>1256</td>
<td>12</td>
<td>1095</td>
<td>5</td>
</tr>
<tr>
<td>14</td>
<td>1334</td>
<td>11</td>
<td>1497</td>
<td>6</td>
</tr>
<tr>
<td>15</td>
<td>1333</td>
<td>10</td>
<td>1036</td>
<td>7</td>
</tr>
<tr>
<td>16</td>
<td>1135</td>
<td>9</td>
<td>1389</td>
<td>8</td>
</tr>
<tr>
<td>17</td>
<td>1082</td>
<td>24</td>
<td>1245</td>
<td>25</td>
</tr>
<tr>
<td>18</td>
<td>1110</td>
<td>23</td>
<td>1015</td>
<td>26</td>
</tr>
<tr>
<td>19</td>
<td>1004</td>
<td>22</td>
<td>1131</td>
<td>27</td>
</tr>
<tr>
<td>20</td>
<td>1272</td>
<td>21</td>
<td>1433</td>
<td>28</td>
</tr>
</tbody>
</table>
B. 2-hours before take-off.: Dry ice and Sampler Set-up
 1) Load dry ice into dewar 0.5” from lid
 2) Ensure that MEDUSA valve control key is in place
 3) 28 V breaker on, Valve box on, Main breaker on
 4) Record P / Δ: Pup 42'4' / 42'2' Pdown 42'2' / 31'4' Pbypass 45'7' / 30'5
 5) Sync MEDUSA clock with clock on laptop +/- 1 sec
 MEDUSA time UTC 16:32:06. Laptop time UTC 16:32:05
 6) Connect traps if not already
 7) Ensure VLV1 = 1, VLV2 = 1, VLV3 = odd, bypass on, pumps off
 8) Open all flask stopcocks 2 half turns Flasks opened by: 1/13
 9a) Re-install splinter shields 9b) Complete rack book
 10) Confirm P upstream, P downstream, pre purge T, and min flush T settings
 Pupset 16'9' Pdownset 45'0' pre purge T 45' flush T 12'0
 11) Verify that no values are blinking on screen
 12) Note trap temperature Trap T: 49'0
 13) Complete bypass / system leak check
 14) Ensure both controllers are to auto
 15) Turn pumps on
 16) Verify pressures are controlling and flow is as expected
 Pup 16'9' Pdown 45'0' Pbypass 72'7' Flow 45'0'0
 17) Adjust flight code to 1 (130/580/18'0'45
 18) If necessary, “Clear All” (after being sure data from last flight copied)
 19) Pump breaker off (PB and VB stay on)

II. In flight
A. immediately after take-off
 Take-off time UTC 15:09:29
 1) Turn pump breaker on
 2) Verify pressures/flows agree with previous values from I.B.17.
 Pup 13'0' Pdown 55'0' Pbypass 76'0' Flow 3000
 3) Verify that Vstat2, CO2, and H2O are all reading correctly and no values
 blinking on screen. If sampling schedule allows, let CO2 and H2O stabilize
 4) Start pre-purge
 5) Note trap temperature
 6) Record ping of pre-purge: (YYMMDD_r###_pre purge) File: 11062022_r****_pre purge.p

B. Sample 45 secs after desired altitude at 3 SLPM (1:15 at 1.8 SLPM), and record values in chart
 below (nominal kft = 1, 5, 10, 15, 21, 28, 36, and 46)
 Whenever possible, favor flushing a flask as long as reasonable possible
 If pilots ascend to over 41 kft on initial, switch to flight plan 3 (90/690/300) for at least the
 top samples
 After first dive (40 kft to 1000 ft) is finished, adjust flight plan to 2 (180/400/120)
<table>
<thead>
<tr>
<th>Pos</th>
<th>Flow (V)</th>
<th>Psa (torr)</th>
<th>PC Setpts</th>
<th>End Time</th>
<th>PALTF</th>
<th>Profile #</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.8</td>
<td>825</td>
<td>130/580</td>
<td>18 35 16</td>
<td>560F1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4.84</td>
<td>827</td>
<td>130/580</td>
<td>18 57 39</td>
<td>6100</td>
<td>1</td>
<td>close F1,2 @ 18:59:00</td>
</tr>
<tr>
<td>3</td>
<td>4.85</td>
<td>831</td>
<td>130/580</td>
<td>19 00 57</td>
<td>11.3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4.57</td>
<td>837</td>
<td>130/580</td>
<td>19 04 07</td>
<td>16.3</td>
<td>1</td>
<td>close F3 @ 19:05:15</td>
</tr>
<tr>
<td>5</td>
<td>4.57</td>
<td>841</td>
<td>130/580</td>
<td>19 08 21</td>
<td>22.6</td>
<td>1</td>
<td>(4:05:21)</td>
</tr>
<tr>
<td>6</td>
<td>4.89</td>
<td>841</td>
<td>130/580</td>
<td>19 13 15</td>
<td>20.3</td>
<td>1</td>
<td>close F5,6 @ 19:14:30</td>
</tr>
<tr>
<td>7</td>
<td>4.90</td>
<td>841</td>
<td>130/580</td>
<td>19 18 10</td>
<td>37.2</td>
<td>1</td>
<td>close F7 @ 19:35:33</td>
</tr>
<tr>
<td>8</td>
<td>4.89</td>
<td>855</td>
<td>130/580</td>
<td>19 39 43</td>
<td>5108</td>
<td>2</td>
<td>After 1st dive = Flight plan 2</td>
</tr>
<tr>
<td>9</td>
<td>4.85</td>
<td>831</td>
<td>130/580</td>
<td>19 46 29</td>
<td>24.2</td>
<td>2</td>
<td>close F8,9 @ 19:46:30</td>
</tr>
<tr>
<td>10</td>
<td>4.85</td>
<td>828</td>
<td>130/580</td>
<td>19 46 08</td>
<td>16.7</td>
<td>2</td>
<td>close F10 @ 19:50:08</td>
</tr>
<tr>
<td>11</td>
<td>4.84</td>
<td>828</td>
<td>130/580</td>
<td>19 52 41</td>
<td>8.8</td>
<td>2</td>
<td>close F11 @ 19:55:05</td>
</tr>
<tr>
<td>12</td>
<td>4.82</td>
<td>823</td>
<td>130/580</td>
<td>19 55 42</td>
<td>5.9</td>
<td>2</td>
<td>close F12 @ 19:59:30</td>
</tr>
<tr>
<td>13</td>
<td>4.54</td>
<td>829</td>
<td>130/580</td>
<td>20 03 23</td>
<td>2.7</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>4.52</td>
<td>825</td>
<td>130/580</td>
<td>20 06 32</td>
<td>5004f1</td>
<td>2</td>
<td>close F13,15 @ 20:13:20</td>
</tr>
<tr>
<td>15</td>
<td>4.53</td>
<td>838</td>
<td>130/580</td>
<td>20 11 32</td>
<td>5004f1</td>
<td>2</td>
<td>close F16 @ 20:17:45</td>
</tr>
<tr>
<td>16</td>
<td>4.53</td>
<td>829</td>
<td>130/580</td>
<td>20 16 52</td>
<td>5khf</td>
<td>2/3</td>
<td>close F17,19 @ 20:13:20</td>
</tr>
</tbody>
</table>

After sampling flask 16, close flasks 1-16

UTC: 20 : 17 Trap T: 40.1

\(\sqrt{2b})\) Turn Pump off \(\sqrt{2b})\) Replace upstream trap \(\sqrt{2b})\) Turn pump back on

<table>
<thead>
<tr>
<th>Pos</th>
<th>Flow (V)</th>
<th>Psa (torr)</th>
<th>SE Setpts</th>
<th>End Time</th>
<th>PALTF</th>
<th>Profile #</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>4.84</td>
<td>825</td>
<td>130/580</td>
<td>20 27 48</td>
<td>500</td>
<td>213</td>
<td>close F17 @ 20:30</td>
</tr>
<tr>
<td>18</td>
<td>4.83</td>
<td>863</td>
<td>130/580</td>
<td>20 49 31</td>
<td>500</td>
<td>213</td>
<td>close F18 @ 20:51</td>
</tr>
<tr>
<td>19</td>
<td>4.82</td>
<td>865</td>
<td>130/580</td>
<td>20 53 28</td>
<td>5.8</td>
<td>3</td>
<td>close F19 @ 20:57</td>
</tr>
<tr>
<td>20</td>
<td>4.85</td>
<td>854</td>
<td>130/580</td>
<td>20 54 30</td>
<td>11.7</td>
<td>3</td>
<td>close F20 @ 21:01</td>
</tr>
<tr>
<td>21</td>
<td>4.53</td>
<td>872</td>
<td>130/580</td>
<td>21 04 58</td>
<td>20.0</td>
<td>3</td>
<td>close F21 @ 21:06</td>
</tr>
<tr>
<td>22</td>
<td>4.83</td>
<td>876</td>
<td>130/580</td>
<td>21 11 11</td>
<td>2.3</td>
<td>3</td>
<td>close F22 @ 21:12:15</td>
</tr>
<tr>
<td>23</td>
<td>4.86</td>
<td>865</td>
<td>130/580</td>
<td>21 13 10</td>
<td>27.0</td>
<td>3/4</td>
<td>close F23 @ 21:19</td>
</tr>
<tr>
<td>24</td>
<td>4.86</td>
<td>861</td>
<td>130/580</td>
<td>21 14 49</td>
<td>19.8</td>
<td>4</td>
<td>close F24 @ 22:03</td>
</tr>
<tr>
<td>25</td>
<td>4.85</td>
<td>853</td>
<td>130/580</td>
<td>22 26 53</td>
<td>500</td>
<td>5</td>
<td>close F25 @ 22:28</td>
</tr>
<tr>
<td>26</td>
<td>4.85</td>
<td>853</td>
<td>130/580</td>
<td>22 32 30</td>
<td>5600</td>
<td>5</td>
<td>close F26 @ 22:33:00</td>
</tr>
<tr>
<td>27</td>
<td>4.85</td>
<td>856</td>
<td>130/580</td>
<td>22 36 11</td>
<td>11.3</td>
<td>5</td>
<td>close F27 @ 22:37:00</td>
</tr>
<tr>
<td>28</td>
<td>4.85</td>
<td>860</td>
<td>130/580</td>
<td>22 39 30</td>
<td>16.3</td>
<td>5</td>
<td>close F28 @ 22:40:10</td>
</tr>
<tr>
<td>29</td>
<td>4.85</td>
<td>855</td>
<td>130/580</td>
<td>22 43 45</td>
<td>21.1</td>
<td>5</td>
<td>close F29 @ 22:44:25</td>
</tr>
<tr>
<td>30</td>
<td>4.85</td>
<td>865</td>
<td>130/580</td>
<td>22 51 52</td>
<td>21.8</td>
<td>5</td>
<td>close F30 @ 22:53:30</td>
</tr>
<tr>
<td>31</td>
<td>4.0</td>
<td>717</td>
<td>10/600</td>
<td>01:02 26</td>
<td>41</td>
<td>5/6</td>
<td>close F31 @ 01:04</td>
</tr>
<tr>
<td>32</td>
<td>4.0</td>
<td>800</td>
<td>10/600</td>
<td>01:56 16</td>
<td>41</td>
<td>5/6</td>
<td>close F32 @ 01:58</td>
</tr>
</tbody>
</table>

After sampling flask 32, close flasks 17-32

UTC: 01 : 25 Trap T: 14.6

\(\sqrt{3b})\) After sampling flask 32, close flasks 17-32

UTC: 01 : 25 Trap T: 14.6

\(\sqrt{90/970}°C\)
III. At the end of the sampling
 1) Turn Pumps breaker off
 2) Ensure all flask valves closed

IV. Post-flight
 1) Remove traps
 2) Plug holes in dewar lid
 3) Download flask sampling data to laptop and pen drive
 4a) Turn off Mains breaker
 4b) Valve box breaker
 4c) 28V breaker
 5) Empty beads from upstream trap into ‘wet’ bead container to dry
 6) Open downstream trap and set upright
 7) ftp *.tab, and MED_* Notes.txt files for this flight to the ao2raw directory on catalog.eol.ucar.edu (or email if ftp does not work)
 8) email a scan of this checksheet to BBS (or fax if scanner not available)

V. Day after flight
 1*) Transfer beads from downstream trap into upstream trap
 2) Unload flasks. Box #1: 108 Box #2: 104
MEDUSA leak check procedures

Flask Leak Check Procedure #1:

1. 28 V breaker on, Valve box on, Pump box on
2. Ensure Box #1 = 1, Box #2 = 1, 6-way = odd, Bypass on
3. Pup Ctrl Closed, Pdn Ctrl Open, Pump On - pull down bypass line for 1 minute
4. If necessary, “Clear All” (after being sure data from last flight secure on laptop)
5. Adjust prepurge time to 20 seconds
6. Toggle between bypass on/off 6 times over 1-min to pull PSA down to < 200 (pull bypass jumper)
8. Save PNGs of AEROS P, Flow/Stat to laptop (YYMMDD_RF##_Leakcheck1.png)
9. Close Pdn, turn pumps off (will leave in position 1)
10. Turn bypass on

Flask Leak Check Procedure #2:

1. “Clear All”
2. Valve box off, main breaker off then on to reset, then valve box back on
3. Ensure AEROS is running with MEDP1, MEDP2, MED_Psa, MEDPBYP recording
4. Open Pdn, turn pumps on and evacuate sample and bypass (toggle 6 times).
5. Close Pdn and turn pumps off
6. Adjust prepurge time to 20 seconds
7. Run 20-second prepurge to check all flask downstream tube Ps
9. Save PNGs of AEROS P/Flow/Stat to laptop (YYMMDD_RF##_Leakcheck2.png)
10. Turn bypass on

Bypass / System Leak Check Procedure:

1. Ensure bypass on, close PC1 and open PC2
2. Turn on pump breaker and let run for 1 minute
3. Verify Pup ~ 10, Pdown ~ 160, Pbypass ~160
4. Switch PC2 to closed and turn off pump
5. Wait 15 seconds and note Pu, Pd, Pb in table below
6. After 1 minute, record values again
7. After 5 minutes, record values again
8. If Pdown and Pbypass < 2 torr/5 mins, skip to 11
9. If values are not ok, turn PC1/PC2 to auto, run gas for 15 seconds, close PC2 for 1 second, and then shut off pump to pressurize system in bypass. Snoop trap fittings, and fittings between and to boxes, and fix/tighten as necessary
10. Return PC1 and PC2 to auto

<table>
<thead>
<tr>
<th>Time (UTC)</th>
<th>Pup</th>
<th>Pdn</th>
<th>Pbypass</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 58 40</td>
<td>4</td>
<td>172</td>
<td>172</td>
<td></td>
</tr>
<tr>
<td>16 59 10</td>
<td>7</td>
<td>172</td>
<td>172</td>
<td></td>
</tr>
</tbody>
</table>
To Do

- tell Britt I'm not seeing secs to purge, secs to cal in run control window
- establish
- Define new P set points
NCAR/SCRIPPS MEDUSA Checklist

I. Preflight

A. Day(s) before flight

✓ 1) Prepare new traps w/ clean beads filled to 2" up from the bottom and bring to plane
✓ 2) Install new traps
✓ 3) Load flasks, confirm old and record new flask IDs, and inspect o-rings
✓ 4) Record Flask Box Numbers: Box #1 108 Box #2 104
✓ 5) Install flask box retaining pins
✓ 6) Connect plumbing. Confirm lines are correctly installed with red label up
✓ 7) Replace cover shields and (✓) b) complete rack book
✓ 8) Record flask IDs into an Excel file on laptop (MED_YYMMDD_RF#.xls)
✓ 9) If necessary, download data from previous flight to laptop and pen drive
✓ 10) Check that flask table is clear. If not, "clear all"
✓ 11) Complete flask leak check procedure #1

Start UTC 19:53

✓ 12) Wait as long as possible, 1-hour preferred, then complete flask leak check procedure #2

Start UTC 21:58

✓ 13) Pull bypass pressure down (PC2 open), then pumps off and PC2 closed
✓ 14) Record Ps: Pup 11 Pdown 173 Pby 177 then all power off

Flask ID Table (View from Front of Box)

<table>
<thead>
<tr>
<th></th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>1216</td>
<td>✓</td>
<td>1002</td>
<td>✓</td>
<td>1305</td>
<td>✓</td>
<td>1404</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1301</td>
<td>✓</td>
<td>1408</td>
<td>✓</td>
<td>1423</td>
<td>✓</td>
<td>1424</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1434</td>
<td>✓</td>
<td>1412</td>
<td>✓</td>
<td>1437</td>
<td>✓</td>
<td>1429</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1421</td>
<td>✓</td>
<td>1445</td>
<td>✓</td>
<td>1431</td>
<td>✓</td>
<td>1226</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1029</td>
<td>✓</td>
<td>1084</td>
<td>✓</td>
<td>1199</td>
<td>✓</td>
<td>1268</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1241</td>
<td>✓</td>
<td>1191</td>
<td>✓</td>
<td>1391</td>
<td>✓</td>
<td>1201</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1060</td>
<td>✓</td>
<td>1209</td>
<td>✓</td>
<td>1398</td>
<td>✓</td>
<td>1250</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1279</td>
<td>✓</td>
<td>1286</td>
<td>✓</td>
<td>1101</td>
<td>✓</td>
<td>1218</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
B. 2 hours before take-off: Dry ice and Sampler Set-up

1) Load dry ice into dewar 0.5" from lid
2) Ensure that MEDUSA valve control key is in place
3) 28 V breaker on, Valve box on, Main breaker on
4) Record P / Δ: Pup = / Pdown = / Pbypass =
5) Sync MEDUSA clock with clock on laptop +/- 1 sec
 MEDUSA time UTC = 16:22:02 Laptop time UTC = 16:22:02
6) Connect traps if not already
7) Ensure VLV1 = 1, VLV2 = 1, VLV3 = odd, bypass on, pumps off
8) Open all flask stopcocks 2 half turns
9) Re-install splinter shields
 Complete rack book
10) Confirm P upstream, P downstream, pre purge, T, and min flush T settings
 Pupset = Pdownset = 430 prepurge T = 45 flush T = 120
11) Verify that no values are blinking on screen
12) Note trap temperature
13) Complete bypass / system leak check
14) Ensure both controllers are to auto
15) Turn pumps on
16) Verify pressures are controlling and flow is as expected
 Pup = Pdown = 430 Pbypass = 750 Flow = 4400
17) Adjust flight code to 1 (130/580/30) ~ (125/610/95)
18) If necessary, “Clear All” (after being sure data from last flight copied)
19) Pump breaker off (PB and VB stay on)

II. In flight
A. Immediately after take-off

1) Turn pump breaker on
2) Verify pressures/flows agree with previous values from I.B.17.
 Pup = Pdown = 430 Pbypass = 750 Flow = 4400
3) Verify that Vstat2, CO2, and H2O are all reading correctly and no values
 blinking on screen. If sampling schedule allows, let CO2 and H2O stabilize
4) Start pre-purge
5) Note trap temperature
 Trap T = 40.0
6) Record png of pre-purge: (YYMMDD_rf##_pre purge) File:

B. Sample 45 secs after desired altitude at 3 SLPM (1:15 at 1.8 SLPM), and record values in chart
 below (nominal kft = 1, 5, 10, 15, 21, 28, 36, and 46)
 Whenever possible, favor flushing a flask as long as reasonable possible
 If pilots ascend to over 41 kft on initial, switch to flight plan 3 (90/690/300) for at least the
 top samples
 After first dive (40 kft to 1000 ft) is finished, adjust flight plan to 2 (180/400/120)

 18:35:00 - 18:36:00
 MEDUSA Inlet Breath Test
 110618_RF03_MEDbreathtest35_36.png
<table>
<thead>
<tr>
<th>Pos</th>
<th>Flow (V)</th>
<th>Psa (torr)</th>
<th>PC Setpts</th>
<th>End Time</th>
<th>PALTF</th>
<th>Profile #</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.81</td>
<td>846</td>
<td>25/610</td>
<td>18:51:16</td>
<td>34.4</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>4.38</td>
<td>843</td>
<td>15/610</td>
<td>18:55:00</td>
<td>25.6</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>4.76</td>
<td>832</td>
<td>15/610</td>
<td>19:00:51</td>
<td>2.0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>4.74</td>
<td>827</td>
<td>15/610</td>
<td>19:04:24</td>
<td>14.0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>4.72</td>
<td>828</td>
<td>15/610</td>
<td>19:08:26</td>
<td>8.0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>4.71</td>
<td>828</td>
<td>15/610</td>
<td>19:11:48</td>
<td>4.1</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>4.71</td>
<td>821</td>
<td>15/610</td>
<td>19:15:50</td>
<td>4.0</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>4.71</td>
<td>821</td>
<td>15/610</td>
<td>19:23:45</td>
<td>4.0</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>4.71</td>
<td>822</td>
<td>15/610</td>
<td>19:31:39</td>
<td>4.0</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>5.39</td>
<td>914</td>
<td>15/430</td>
<td>19:57:51</td>
<td>2.8</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>5.39</td>
<td>915</td>
<td>15/430</td>
<td>20:06:56</td>
<td>2.8</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>5.38</td>
<td>914</td>
<td>15/430</td>
<td>20:11:11</td>
<td>19.6</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>5.37</td>
<td>910</td>
<td>15/430</td>
<td>20:18:26</td>
<td>13.3</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>5.37</td>
<td>907</td>
<td>15/430</td>
<td>20:28:38</td>
<td>8.7</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>5.36</td>
<td>923</td>
<td>15/430</td>
<td>20:22:32</td>
<td>2.7</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>5.36</td>
<td>909</td>
<td>15/430</td>
<td>20:26:36</td>
<td>1.0</td>
<td>2</td>
</tr>
</tbody>
</table>

1) After sampling flask 16, close flasks 1-16

2a) Turn Pump off 2b) Replace upstream trap 2c) Turn pump back on

3) After sampling flask 32, close flasks 17-32

UTC: 01:28 Trap T: 400
III. At the end of the sampling
 1) Turn Pumps breaker off
 2) Ensure all flask valves closed

IV. Post-flight
 1) Remove traps
 2) Plug holes in dewar lid
 3) Download flask sampling data to laptop and pen drive
 4a) Turn off Mains breaker
 4b) Valve box breaker
 4c) 28V breaker
 5) Empty beads from upstream trap into 'wet' bead container to dry
 6) Open downstream trap and set upright
 7) ftp *.tab, and MED_*.Notes.txt files for this flight to the ao2raw directory on catalog.eol.ucar.edu (or email if ftp does not work)
 8) email a scan of this checksheet to BBS (or fax if scanner not available)

V. Day after flight
 1) Transfer beads from downstream trap into upstream trap
 2) Unload flasks. Box #1: 116 Box #2: 103
MEDUSA leak check procedures

Flask Leak Check Procedure #1:
- 28 V breaker on, Valve box on, Pump box on
- Ensure Box #1 = 1, Box #2 = 1, 6-way = odd, Bypass on
- 3) Pup Ctrl Closed, Pdn Ctrl Open, Pump On - pull down bypass line for 1 minute
- 4) If necessary, “Clear All” (after being sure data from last flight secure on laptop)
- 5) Adjust pre purge time to 20 seconds
- 6) Toggle between bypass on/off 6 times over 1-min to pull PSA down to < 200
- 7) Run 20-second pre purge to evacuate lines. Start: 14:53:00. Finish: 15:03:00
- 8) Save PNGs of AEROS PFlow/Stat to laptop (YYMMDD_RF##_Leakcheck1.png)
- 9) Close Pdn, turn pumps off (will leave in position 1)
- 10) Turn bypass on

Flask Leak Check Procedure #2:
- 1) “Clear All”
- 2) Valve box off, main breaker off then on to reset, then valve box back on
- 3) Ensure AEROS is running with MEDP1, MEDP2, MED_Psa, MEDPYP recording
- 4) Open Pdn, turn pumps on and evacuate sample and bypass (toggle 6 times).
- 5) Close Pdn and turn pumps off
- 6) Adjust pre purge time to 20 seconds
- 7) Run 20-second pre purge to check all flask downstream tube Ps
- 9) Save PNGs of AEROS PFlow/Stat to laptop (YYMMDD_RF##_Leakcheck2.png)
- 10) Turn bypass on

Bypass / System Leak Check Procedure:
- 1) Ensure bypass on, close PC1 and open PC2
- 2) Turn on pump breaker and let run for 1 minute
- 3) Verify Pup ~ 10, Pdown ~160, Pbypass ~160
- 4) Switch PC2 to closed and turn off pump
- 5) Wait 15 seconds and note Pu, Pd, Pb in table below
- 6) After 1 minute, record values again.
- 7) After 5 minutes, record values again
- 8) If Pdown and Pbypass <2 torr/5 mins, skip to 10
- 9) If values are not ok, turn PC1/PC2 to auto, run gas for 15 seconds, close PC2 for 1 second, and then shut off pump to pressurize system in bypass. Snoop trap fittings, and fittings between and to boxes, and fix/tighten as necessary
- 10) Return PC1 and PC2 to auto

<table>
<thead>
<tr>
<th>Time (UTC)</th>
<th>Pup</th>
<th>Pdn</th>
<th>Pbypass</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>16:26</td>
<td>5</td>
<td>173</td>
<td>173</td>
<td></td>
</tr>
<tr>
<td>16:27</td>
<td>7</td>
<td>173</td>
<td>173</td>
<td></td>
</tr>
<tr>
<td>16:28</td>
<td>11</td>
<td>173</td>
<td>173</td>
<td></td>
</tr>
<tr>
<td>16:29</td>
<td>15</td>
<td>173</td>
<td>173</td>
<td></td>
</tr>
</tbody>
</table>
Now on calichy... W.I.T. losses
NCAR/SCRIPPS MEDUSA Checklist

V. 2011.06.12

I. Preflight
A. Days before flight

1) Prepare new traps w/ clean beads filled to 2" up from the bottom and bring the plane to plane
2) Install new traps
3) Load flasks, confirm old and record new flask IDs, and inspect o-rings
4) Record Flask Box Numbers: Box #1 116 Box #2 103
5) Install flask box retaining pins
6) Connect plumbing. Confirm lines are correctly installed with red label up
7a) Replace cover shields and 7b) complete rack book
8) Record flask IDs into an Excel file on laptop (MED_YYMMDD_RF##.xls)
9) If necessary, download data from previous flight to laptop and pen drive
10) Check that flask table is clear. If not, “clear all”
11) Complete flask leak check procedure #1
12) Wait as long as possible, 1-hour preferred, then complete flask leak check procedure #2
13) Pull bypass pressure down (PC2 open), then pumps off and PC2 closed
14) Record Ps: Pup Pdown Pbypass then all power off

<table>
<thead>
<tr>
<th>Flask ID Table (View from Front of Box)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>17</td>
</tr>
<tr>
<td>18</td>
</tr>
<tr>
<td>19</td>
</tr>
<tr>
<td>20</td>
</tr>
</tbody>
</table>

Major leak detected and addressed 20110621 (see MED III book pp 80-92)
B. 2-hours before take-off: Dry ice and Sampler Set-up
 1) Load dry ice into dewar 0.5” from lid
 2) Ensure that MEDUSA valve control key is in place
 3) 28 V breaker on, Valve box on, Main breaker on
 4) Record P / Δ: Pup 946 / Pdown 818 / Pbypass 421
 5) Sync MEDUSA clock with clock on laptop +/- 1 sec
 MEDUSA time UTC 22:16:01 Laptop time UTC 22:16:01
 6) Connect traps if not already
 7) Ensure VLV1 = 1, VLV2 = 1, VLV3 = odd, bypass on, pumps off
 8) Open all flask stopcocks 2 half turns
 Flasks opened by: JDB
 9a) Re-install splinter shields
 9b) Complete rack book → actually Aaron just
 10) Confirm P upstream, P downstream, pre purge T, and min flush T settings
 Pupset 130 Pdownset 430 pre purge T 120 flush T 120
 11) Verify that no values are blinking on screen
 Trap T: 39.1
 12) Note trap temperature
 13) Complete bypass / system leak check
 14) Ensure both controllers are to auto
 15) Turn pumps on
 16) Verify pressures are controlling and flow is as expected
 Pup 169 Pdown 430 Pbypass 121 Flow 1100
 17) Adjust flight code to 1 (130/580/30)
 18) If necessary, “Clear All” (after being sure data from last flight copied)
 19) Pump breaker off (PB and VB stay on)
 22) Pup, Pdown controllers -> closed to prevent air leaking back in
 through PC2.

II. In flight

A. Immediately after take-off
 Take-off time UTC 23:16:13
 1) Turn pump breaker on
 2) Verify pressures/flows agree with previous values from I.B.17.
 Pup 125 Pdown 610 Pbypass 763 Flow 2500
 3) Verify that Vstat2, CO2, and H2O are all reading correctly and no values
 blinking on screen. If sampling schedule allows, let CO2 and H2O stabilize
 4) Start pre-purge
 UTC 23:16:40
 Trap T: 39.1
 5) Note trap temperature
 6) Record png of pre-purge: (YYMMDD_rf##_prepurge) File: 06 22_04-prepurge

B. Sample 45 secs after desired altitude at 3 SLPM (1:15 at 1.8 SLPM), and record values in chart
 below (nominal kft = 1, 5, 10, 15, 21, 28, 36, and 46)
 Whenever possible, favor flushing a flask as long as reasonable possible
 If pilots ascend to over 41 kft on initial, switch to flight plan 3 (90/690/300) for at least the
 top samples
 After first dive (40 kft to 1000 ft) is finished, adjust flight plan to 2 (180/400/120)
<table>
<thead>
<tr>
<th>Pos</th>
<th>Flow (V)</th>
<th>Psa (torr)</th>
<th>PC Setpts</th>
<th>End Time</th>
<th>PALTF</th>
<th>Profile #</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.74</td>
<td>539</td>
<td>125/610</td>
<td>23:53:09</td>
<td>4.0</td>
<td>1</td>
<td>23:53:20</td>
</tr>
<tr>
<td>2</td>
<td>4.60</td>
<td>819</td>
<td></td>
<td>00:14:30</td>
<td>2.4</td>
<td>1</td>
<td>00:19:00</td>
</tr>
<tr>
<td>3</td>
<td>4.63</td>
<td>813</td>
<td></td>
<td>00:16:06</td>
<td>1.9</td>
<td>1</td>
<td>00:19:10</td>
</tr>
<tr>
<td>4</td>
<td>4.65</td>
<td>818</td>
<td></td>
<td>00:22:25</td>
<td>1.3.1</td>
<td>1</td>
<td>00:23:10</td>
</tr>
<tr>
<td>5</td>
<td>4.62</td>
<td>815</td>
<td></td>
<td>00:26:39</td>
<td>4.7</td>
<td>1</td>
<td>00:27:30</td>
</tr>
<tr>
<td>6</td>
<td>4.62</td>
<td>814</td>
<td></td>
<td>00:31:11</td>
<td>1</td>
<td>1</td>
<td>00:32:30</td>
</tr>
<tr>
<td>7</td>
<td>4.62</td>
<td>808</td>
<td></td>
<td>01:58:06</td>
<td>1</td>
<td>4</td>
<td>01:59:30</td>
</tr>
<tr>
<td>8</td>
<td>4.61</td>
<td>607</td>
<td></td>
<td>02:01:30</td>
<td>5.9</td>
<td>4</td>
<td>After 1st dive => Flight plan 2</td>
</tr>
<tr>
<td>9</td>
<td>4.61</td>
<td>809</td>
<td></td>
<td>02:04:51</td>
<td>1</td>
<td>4</td>
<td>02:05:30</td>
</tr>
<tr>
<td>10</td>
<td>4.65</td>
<td>813</td>
<td></td>
<td>02:08:17</td>
<td>16.2</td>
<td>4</td>
<td>02:08:50</td>
</tr>
<tr>
<td>11</td>
<td>4.67</td>
<td>819</td>
<td></td>
<td>02:12:45</td>
<td>22.9</td>
<td>4</td>
<td>02:14:00</td>
</tr>
<tr>
<td>12</td>
<td>4.69</td>
<td>821</td>
<td></td>
<td>02:17:02</td>
<td>29.4</td>
<td>4</td>
<td>02:17:35</td>
</tr>
<tr>
<td>13</td>
<td>4.71</td>
<td>826</td>
<td></td>
<td>02:25:04</td>
<td>37</td>
<td>4</td>
<td>02:25:40</td>
</tr>
<tr>
<td>14</td>
<td>5.97</td>
<td>781</td>
<td>90/690</td>
<td>02:35:15</td>
<td>43</td>
<td>4</td>
<td>02:36:00</td>
</tr>
<tr>
<td>15</td>
<td>3.97</td>
<td>782</td>
<td>90/690</td>
<td>02:42:08</td>
<td>43</td>
<td>4</td>
<td>02:42:50</td>
</tr>
<tr>
<td>16</td>
<td>8.94</td>
<td>788</td>
<td>90/690</td>
<td>02:55:46</td>
<td>24</td>
<td>5</td>
<td>02:56:30 / Switch to 170/430</td>
</tr>
</tbody>
</table>

1) After sampling flask 16, close flasks 1-16

UTC: 02:57
Trap T: 37.5

x 2a) Turn Pump off

x 2b) Replace upstream trap

x 2c) Turn pump back on

<table>
<thead>
<tr>
<th>Pos</th>
<th>Flow (V)</th>
<th>Psa (torr)</th>
<th>PC Setpts</th>
<th>End Time</th>
<th>PALTF</th>
<th>Profile #</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>5.33</td>
<td>970</td>
<td>170/430</td>
<td>03:00:11</td>
<td>16</td>
<td>5</td>
<td>03:01:10</td>
</tr>
<tr>
<td>18</td>
<td>5.3</td>
<td>960</td>
<td>170/430</td>
<td>03:06:22</td>
<td>9.3</td>
<td>5</td>
<td>03:07:00</td>
</tr>
<tr>
<td>19</td>
<td>5.29</td>
<td>950</td>
<td>170/430</td>
<td>03:11:56</td>
<td>2.0</td>
<td>5</td>
<td>03:16:00</td>
</tr>
<tr>
<td>20</td>
<td>5.3</td>
<td>929</td>
<td></td>
<td>03:16:10</td>
<td>1.0</td>
<td>5</td>
<td>03:17:00</td>
</tr>
<tr>
<td>21</td>
<td>5.3</td>
<td>968</td>
<td></td>
<td>04:24:33</td>
<td>28</td>
<td>7</td>
<td>04:25:45</td>
</tr>
<tr>
<td>22</td>
<td>5.3</td>
<td>966</td>
<td></td>
<td>04:30:38</td>
<td>19.5</td>
<td>7</td>
<td>04:31:45</td>
</tr>
<tr>
<td>23</td>
<td>5.31</td>
<td>944</td>
<td></td>
<td>04:41:40</td>
<td>13.7</td>
<td>7</td>
<td>04:43:00</td>
</tr>
<tr>
<td>24</td>
<td>5.31</td>
<td>933</td>
<td></td>
<td>04:52:21</td>
<td>7.6</td>
<td>7</td>
<td>04:53:20</td>
</tr>
<tr>
<td>25</td>
<td>5.29</td>
<td>924</td>
<td></td>
<td>04:51:17</td>
<td>1</td>
<td>7</td>
<td>04:56:20</td>
</tr>
<tr>
<td>26</td>
<td>3.97</td>
<td>788</td>
<td>90/690</td>
<td>05:02:03</td>
<td>47.1</td>
<td>8</td>
<td>05:02:00</td>
</tr>
<tr>
<td>27</td>
<td>4.0</td>
<td>783</td>
<td>90/690</td>
<td>05:11:35</td>
<td>32.2</td>
<td>8</td>
<td>05:13:00</td>
</tr>
<tr>
<td>28</td>
<td>5.35</td>
<td>951</td>
<td>170/430</td>
<td>05:56:35</td>
<td>25.8</td>
<td>8</td>
<td>06:16:30</td>
</tr>
<tr>
<td>29</td>
<td>5.35</td>
<td>941</td>
<td>170/430</td>
<td>07:18:26</td>
<td>79.4</td>
<td>8</td>
<td>07:19:30</td>
</tr>
<tr>
<td>30</td>
<td>5.35</td>
<td>953</td>
<td>170/430</td>
<td>07:21:56</td>
<td>12.1</td>
<td>8</td>
<td>07:23:00</td>
</tr>
<tr>
<td>31</td>
<td>5.32</td>
<td>958</td>
<td>170/430</td>
<td>07:25:35</td>
<td>5.1</td>
<td>8</td>
<td>07:26:30</td>
</tr>
<tr>
<td>32</td>
<td>5.31</td>
<td>976</td>
<td>170/430</td>
<td>07:29:15</td>
<td>1.8</td>
<td>8</td>
<td>07:29:30</td>
</tr>
</tbody>
</table>

3) After sampling flask 32, close flasks 17-32

UTC: 07:29
Trap T: 40.5

PHUO (start) (Pencil is preferred) 2D Dips (Alt ↑, Time →) (end) RAR
III. At the end of the sampling
 1) Turn Pumps breaker off
 2) Ensure all flask valves closed

IV. Post-flight
 1) Remove traps
 2) Plug holes in dewar lid
 3) Download flask sampling data to laptop and pen drive
 4a) Turn off Mains breaker 4b) Valve box breaker 4c) 28V breaker
 5) Empty beads from upstream trap into ‘wet’ bead container to dry
 6) Open downstream trap and set upright
 7) ftp *.tab, and MED_*.Notes.txt files for this flight to the ao2raw directory on
 catalog.eol.ucar.edu (or email if ftp does not work)
 8) email a scan of this checksheet to BBS (or fax if scanner not available)

V. Day after flight
 1) Transfer beads from downstream trap into upstream trap
 2) Unload flasks. Box #1: 15 Box #2 162
MEDUSA leak check procedures

Flask Leak Check Procedure #1:

1. 28 V breaker on, Valve box on, Pump box on
2. Ensure Box #1 = 1, Box #2 = 1, 6-way = odd, Bypass on
3. Pup Ctrl Closed, Pdn Ctrl Open, Pump On - pull down bypass line for 1 minute
4. If necessary, “Clear All” (after being sure data from last flight secure on laptop)
5. Adjust prepurge time to 20 seconds
6. Toggle between bypass on/off 6 times over 1-min to pull PSA down to < 200
8. Save PNGs of AEROS P, Flow/Stat to laptop (YYMMDD_RF##_Leakcheck1.png)
9. Close Pdn, turn pumps off (will leave in position 1)
10. Turn bypass on

Flask Leak Check Procedure #2:

1. “Clear All”
2. Valve box off, main breaker off then on to reset, then valve box back on
3. Ensure AEROS is running with MEDP1,MEDP2, MED Ps, MEDPBYP recording
4. Open Pdn, turn pumps on and evacuate sample and bypass (toggle 6 times)
5. Close Pdn and turn pumps off
6. Adjust prepurge time to 20 seconds
7. Run 20-second prepurge to check all flask downstream tube Ps
9. Save PNGs of AEROS P, Flow/Stat to laptop (YYMMDD_RF##_Leakcheck2.png)
10. Turn bypass on

Bypass / System Leak Check Procedure:

1. Ensure bypass on, close PC1 and open PC2
2. Turn on pump breaker and let run for 1 minute
3. Verify Pup ~ 10, Pdown ~ 160, Pbypass ~ 160
4. Switch PC2 to closed and turn off pump
5. Wait 15 seconds and note Pu, Pd, Pb in table below
6. After 1 minute, record values again.
7. After 5 minutes, record values again
8. If Pdown and Pbypass < 2 torr/5 mins, skip to 12
9. If values are not ok, turn PC1/PC2 to auto, run gas for 15 seconds, close PC2 for 1 second, and then shut off pump to pressurize system in bypass. Snoop trap fittings, and fittings between and to boxes, and fix/tighten as necessary
10. Return PC1 and PC2 to auto

<table>
<thead>
<tr>
<th>Time (UTC)</th>
<th>Pup</th>
<th>Pdn</th>
<th>Pbypass</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>22:50:20</td>
<td>5</td>
<td>167</td>
<td>172</td>
<td></td>
</tr>
<tr>
<td>22:51:20</td>
<td>10</td>
<td>167</td>
<td>172</td>
<td></td>
</tr>
<tr>
<td>22:54:20</td>
<td>13</td>
<td>169</td>
<td>173</td>
<td></td>
</tr>
<tr>
<td>22:36:20</td>
<td>15</td>
<td>176</td>
<td>174</td>
<td></td>
</tr>
</tbody>
</table>
NCAR/SCRIPPS MEDUSA Checklist V. 2011.06.12

I. Preflight

A. Day(s) before flight
- Date (YYMMDD) = 110623

1) Prepare new traps w/ clean beads filled to 2” up from the bottom and bring to plane
2) Install new traps
 Upstream: E Downstream: D
3) Load flasks, confirm old and record new flask IDs, and inspect o-rings
4) Record Flask Box Numbers: Box #1 15 Box #2 10 2
5) Install flask box retaining pins
6) Connect plumbing. Confirm lines are correctly installed with red label up
7a) Replace cover shields and b) complete rack book
8) Record flask IDs into an Excel file on laptop (MED_YYMMDD_RF##.xls)
9a) If necessary, download data from previous flight to laptop and pen drive
10) Check that flask table is clear. If not, “clear all”
11) Complete flask leak check procedure #1
 Start UTC 23:50
12) Wait as long as possible, 1-hour preferred, then complete flask leak check procedure #2
 Start UTC 01:13
13) Pull bypass pressure down (PC2 open), then pumps off and PC2 closed
14) Record Ps: Pup ≤ Pdown 172 Pbypass 72 then all power off

<table>
<thead>
<tr>
<th>Flask ID Table (View from Front of Box)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>18</td>
</tr>
<tr>
<td>19</td>
</tr>
<tr>
<td>20</td>
</tr>
</tbody>
</table>
B. 2-hours before take-off: Dry ice and Sampler Set-up

1. Load dry ice into dewar 0.5" from lid
2. Ensure that MEDUSA valve control key is in place
3. 28 V breaker on, Valve box on, Main breaker on
4. Record P / Δ: Pup 66.1 / +116 / Pdown 667 / ___ Pbypass 613 / ___
5. Sync MEDUSA clock with clock on laptop +/- 1 sec
 MEDUSA time UTC 18:53:00 Laptop time UTC 18:53:00
6. Connect traps if not already
7. Ensure VLV1 = 1, VLV2 = 1, VLV3 = odd, bypass on, pumps off
8. Open all flask stopcocks 2 half turns Flasks opened by: ___
9a) Re-install splinter shields ___ 9b) Complete rack book
10. Confirm P upstream, P downstream, pre purge T, and min flush T settings
 Puser 170 Pdownset 430 pre-purge T 45 flush T 120
11. Verify that no values are blinking on screen
12. Note trap temperature
13. Complete bypass / system leak check
14. Ensure both controllers are to auto
15. Turn pumps on
16. Verify pressures are controlling and flow is as expected
 Pup 161 Pdown 430 Pbypass 425 Flow 4200
17. Adjust flight code to 1 (130/580/30)
X 18. If necessary, “Clear All” (after being sure data from last flight copied)
19. Pump breaker off (PB and VB stay on)

II. In flight
A. Immediately after take-off
 Take-off time UTC 21:30:00
1. Turn pump breaker on
2. Verify pressures/flows agree with previous values from I.B.17.
 Pup 125 Pdown 630 Pbypass 425 Flow 200
3. Verify that Vstat2 CO2 and H2O are all reading correctly and no values
 blinking on screen. If sampling schedule allows, let CO2 and H2O stabilize
4. Start pre-purge
 UTC 21:31:14
5. Note trap temperature
 Trap T: 39.6
6. Record png of pre-purge: (YYMMDD_rf##_prepurge) File: mo625_rfs_prepurge.png

B. Sample 45 secs after desired altitude at 3 SLPM (1:15 at 1.8 SLPM), and record values in chart
 below (nominal kft = 1, 5, 10, 15, 21, 28, 36, and 46)
 Whenever possible, favor flushing a flask as long as reasonable possible
 If pilots ascend to over 41 kft on initial, switch to flight plan 3 (90/690/300) for at least the
 top samples
 After first dive (40 kft to 1000 ft) is finished, adjust flight plan to 2 (180/400/120)
After sampling flask 16, close flasks 1-16

UTC: 00:19 Trap T: 39.9

2a) Turn Pump off 2b) Replace upstream trap 2c) Turn pump back on

3) After sampling flask 32, close flasks 17-32

UTC: 04:22 Trap T: 39.9
III. At the end of the sampling
 ✓ 1) Turn Pumps breaker off
 2) Ensure all flask valves closed

IV. Post-flight
 1) Remove traps
 2) Plug holes in dewar lid
 3) Download flask sampling data to laptop and pen drive
 4a) Turn off Mains breaker
 4b) Valve box breaker
 4c) 28V breaker
 5) Empty beads from upstream trap into ‘wet’ bead container to dry
 6) Open downstream trap and set upright
 7) ftp *.tab, and MED_*_Notes.txt files for this flight to the ao2raw directory on
 catalog.eol.ucar.edu (or email if ftp does not work)
 8) Email a scan of this checksheet to BBS (or fax if scanner not available)

V. Day after flight
 1) Transfer beads from downstream trap into upstream trap
 2) Unload flasks. Box #1: _____ Box #2 _____

Per Britt:

JB spun regulator knobs in their back out. Checked to see they were all the way out.

Lo side Ps

\[\begin{align*}
\text{LS} &= 12.7 \\
\text{LT} &= 11.0 \\
\text{WT} &= 13.4
\end{align*} \]

Hi side Ps (while we’re at it)

\[\begin{align*}
\text{t} &= 110625 \ 17:00 \ \text{Local} \\
\text{LS} &= 1610 \\
\text{LT} &= 1810 \\
\text{WT} &= 370
\end{align*} \]

Oops, wrong. Checksheet. Transfer into AO2
MEDUSA leak check procedures

Flask Leak Check Procedure #1:
1. 28 V breaker on, Valve box on, Pump box on
2. Ensure Box #1 = 1, Box #2 = 1, 6-way = odd, Bypass on
3. Pup Ctrl Closed, Pdn Ctrl Open, Pump On - pull down bypass line for 1 minute
4. If necessary, “Clear All” (after being sure data from last flight secure on laptop)
5. Adjust prepurge time to 20 seconds
6. Toggle between bypass on/off 6 times over 1-min to pull PSA down to < 200
8. Save PNGs of AEROS P,Flow/Stat to laptop (YYMMDD_RF##_Leakcheck1.png)
9. Close Pdn, turn pumps off (will leave in position 1)
10. Turn bypass on

Flask Leak Check Procedure #2:
1. “Clear All”
2. Valve box off, main breaker off then on to reset, then valve box back on
3. Ensure AEROS is running with MEDP1,MEDP2, MED_Psa, MEDPBYP recording
4. Open Pdn, turn pumps on and evacuate sample and bypass (toggle 6 times): 191 192 189
5. Close Pdn and turn pumps off
6. Adjust prepurge time to 20 seconds
7. Run 20-second prepurge to check all flask downstream tube Ps
8. Record times for AEROS matching. Start: 01/13/11 Finish:
9. Save PNGs of AEROS P/Flow/Stat to laptop (YYMMDD_RF##_Leakcheck2.png)
10. Turn bypass on

Bypass / System Leak Check Procedure:
1. Ensure bypass on, close PC1 and open PC2
2. Turn on pump breaker and let run for 1 minute
3. Verify Pup ~ 10, Pdown ~160, Pbypass ~160
4. Switch PC2 to closed and turn off pump
5. Wait 15 seconds and note Pu, Pd, Pb in table below
6. After 1 minute, record values again.
7. After 5 minutes, record values again
8. If Pdown and Pbypass <2 torr/5 mins, skip to 11
9. If values are not ok, turn PC1/PC2 to auto, run gas for 15 seconds, close PC2 for 1 second, and then shut off pump to pressurize system in bypass. Snoop trap fittings, and fittings between and to boxes, and fix/tighten as necessary
10. Return PC1 and PC2 to auto

<table>
<thead>
<tr>
<th>Time (UTC)</th>
<th>Pup</th>
<th>Pdn</th>
<th>Pbypass</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>19:10:15</td>
<td>7</td>
<td>174</td>
<td>174</td>
<td></td>
</tr>
<tr>
<td>19:13:45</td>
<td>10</td>
<td>172</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td>19:16:45</td>
<td>16</td>
<td>173</td>
<td>175</td>
<td></td>
</tr>
</tbody>
</table>
NCAR/SCRIPPS MEDUSA Checklist

V. 2011.06.12

I. Preflight

A. Day(s) before flight

- Prepare new traps w/ clean beads filled to 2" up from the bottom and bring to plane
- Install new traps
- Load flasks, confirm old and record new flask IDs, and inspect o-rings
- Record Flask Box Numbers: Box #1 18 Box #2 110
- Install flask box retaining pins
- Connect plumbing. Confirm lines are correctly installed with red label up
- Replace cover shields and complete rack book
- Record flask IDs into an Excel file on laptop (MED_YYMMDD_RF##.xls)
- If necessary, download data from previous flight to laptop and pen drive
- Check that flask table is clear. If not, “clear all”
- Complete flask leak check procedure #1
- Wait as long as possible, 1-hour preferred, then complete flask leak check procedure #2
- Pull bypass pressure down (PC2 open), then pumps off and PC2 closed
- Record Ps: Pup 1 Pdown 146 Pbypass 168 then all power off

<table>
<thead>
<tr>
<th>Flask ID Table (View from Front of Box)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

Start UTC 21:32

Start UTC 22:26
B. 2-hours before take-off: Dry ice and Sampler Set-up

1. Load dry ice into dewar 0.5” from lid
2. Ensure that MEDUSA valve control key is in place
3. 28 V breaker on, Valve box on, Main breaker on
4. Record P / A: Pup 129 638 Pdown 69 7 / 619 Pby 582 / 514
5. Sync MEDUSA clock with clock on laptop +/- 1 sec
 MEDUSA time UTC 12:32:01 Laptop time UTC 12:32:00
6. Connect traps if not already
7. Ensure VLV1 = 1, VLV2 = 1, VLV3 = odd, bypass on, pumps off
8. Open all flask stopcocks 2 half turns
 Flasks opened by: JPB / AW
9a. Re-install splinter shields
9b. Complete rack book
10. Confirm P upstream, P downstream, pre purge T, and min flush T settings
 Pupset 170 Pdownset 450 pre purge T < flush T 120
11. Verify that no values are blinking on screen
12. Note trap temperature
13. Complete bypass / system leak check
14. Ensure both controllers are to auto
15. Turn pumps on
16. Verify pressures are controlling and flow is as expected
 Pup 129 Pdown 450 Pby 763 Flow 4800
17. Adjust flight code to 1 (130/500/30) 125/620 2900
18. If necessary, “Clear All” (after being sure data from last flight copied)
19. Pump breaker off (PB and VB stay on)
20. RC 1, 2 → closed

II. In Flight

A. Immediately after take-off
1. Take-off time UTC 23:09:30
2. Turn pump breaker on
3. Verify pressures/flows agree with previous values from I.B.17.
 Pup 129 Pdown 620 Pby 456 Flow 7400
4. Verify that Vstat2, CO2, and H2O are all reading correctly and no values
 blinking on screen. If sampling schedule allows, let CO2 and H2O stabilize
5. Start pre-purge
6. Note trap temperature
7. Record png of pre purge: (YYMMDD_r#_prepurge) File: 110628_RFO6_prepurge.png

B. Sample 45 secs after desired altitude at 3 SLPM (1:15 at 1.8 SLPM), and record values in chart
 below (nominal kft = 1, 5, 10, 15, 21, 28, 36, and 46)
 Whenever possible, favor flushing a flask as long as reasonable possible
 If pilots ascend to over 41 kft on initial, switch to flight plan 3 (90/690/300) for at least the
 top samples
 After first dive (40 kft to 1000 ft) is finished, adjust flight plan to 2 (180/400/120)
<table>
<thead>
<tr>
<th>Pos</th>
<th>Flow (V)</th>
<th>Psa (torr)</th>
<th>PC Setpts</th>
<th>End Time</th>
<th>PALTF</th>
<th>Profile #</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.63</td>
<td>823</td>
<td>125/620</td>
<td>23:48:00</td>
<td>1</td>
<td>1</td>
<td>23:49:30</td>
</tr>
<tr>
<td>2</td>
<td>4.63</td>
<td>816</td>
<td>125/620</td>
<td>00:52:32</td>
<td>1</td>
<td>1</td>
<td>00:53:10</td>
</tr>
<tr>
<td>3</td>
<td>4.63</td>
<td>815</td>
<td>125/620</td>
<td>00:57:10</td>
<td>22.8</td>
<td>1</td>
<td>00:57:45</td>
</tr>
<tr>
<td>4</td>
<td>4.67</td>
<td>824</td>
<td>125/620</td>
<td>01:02:14</td>
<td>29.9</td>
<td>1</td>
<td>01:03:00</td>
</tr>
<tr>
<td>5</td>
<td>4.67</td>
<td>831</td>
<td>125/620</td>
<td>01:07:34</td>
<td>38.0</td>
<td></td>
<td>01:09:10</td>
</tr>
<tr>
<td>6</td>
<td>4.72</td>
<td>835</td>
<td>125/620</td>
<td>01:14:40</td>
<td>40.0</td>
<td>1</td>
<td>01:15:10</td>
</tr>
<tr>
<td>7</td>
<td>3.95</td>
<td>796</td>
<td>90/710</td>
<td>02:05:37</td>
<td>45</td>
<td>1</td>
<td>02:06:20</td>
</tr>
<tr>
<td>8</td>
<td>3.95</td>
<td>775</td>
<td>90/710</td>
<td>02:13:02</td>
<td>43</td>
<td>3</td>
<td>02:15:30</td>
</tr>
<tr>
<td>9</td>
<td>4.72</td>
<td>833</td>
<td>125/620</td>
<td>02:25:17</td>
<td>31</td>
<td>2</td>
<td>02:26:10</td>
</tr>
<tr>
<td>10</td>
<td>4.69</td>
<td>827</td>
<td>125/620</td>
<td>02:29:21</td>
<td>26</td>
<td>2</td>
<td>02:30:00</td>
</tr>
<tr>
<td>11</td>
<td>4.64</td>
<td>814</td>
<td>125/620</td>
<td>02:33:34</td>
<td>19.2</td>
<td>2</td>
<td>02:34:15</td>
</tr>
<tr>
<td>12</td>
<td>4.63</td>
<td>818</td>
<td>125/620</td>
<td>02:37:45</td>
<td>13.2</td>
<td>2</td>
<td>02:38:15</td>
</tr>
<tr>
<td>13</td>
<td>4.63</td>
<td>818</td>
<td>125/620</td>
<td>02:42:19</td>
<td>8.6</td>
<td>2</td>
<td>02:43:30</td>
</tr>
<tr>
<td>14</td>
<td>4.63</td>
<td>816</td>
<td>125/620</td>
<td>02:45:53</td>
<td>3.4</td>
<td>2</td>
<td>02:47:30</td>
</tr>
<tr>
<td>15</td>
<td>4.65</td>
<td>824</td>
<td>125/620</td>
<td>02:51:25</td>
<td>0.5</td>
<td>2</td>
<td>02:52:00</td>
</tr>
<tr>
<td>16</td>
<td>5.35</td>
<td>919</td>
<td>170/450</td>
<td>03:16:57</td>
<td>2.8</td>
<td>3</td>
<td>03:17:45</td>
</tr>
</tbody>
</table>

✓ 1) After sampling flask 16, close flasks 1-16
UTC: 03:17
Trap T: 40.2

× 2a) Turn Pump off × 2b) Replace upstream trap × 2c) Turn pump back on

<table>
<thead>
<tr>
<th>Pos</th>
<th>Flow (V)</th>
<th>Psa (torr)</th>
<th>PC Setpts</th>
<th>End Time</th>
<th>PALTF</th>
<th>Profile #</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>5.34</td>
<td>922</td>
<td>170/450</td>
<td>03:22:35</td>
<td>19.7</td>
<td>3</td>
<td>03:23:30</td>
</tr>
<tr>
<td>18</td>
<td>5.31</td>
<td>972</td>
<td>170/450</td>
<td>03:27:03</td>
<td>13.2</td>
<td>3</td>
<td>03:28:10</td>
</tr>
<tr>
<td>19</td>
<td>5.31</td>
<td>964</td>
<td>170/450</td>
<td>03:30:00</td>
<td>8.7</td>
<td>3</td>
<td>03:31:10</td>
</tr>
<tr>
<td>20</td>
<td>5.31</td>
<td>976</td>
<td>170/450</td>
<td>03:33:55</td>
<td>2.7</td>
<td>3</td>
<td>03:34:40</td>
</tr>
<tr>
<td>21</td>
<td>5.30</td>
<td>969</td>
<td>170/450</td>
<td>03:39:29</td>
<td>0.5</td>
<td>3</td>
<td>03:40:30</td>
</tr>
<tr>
<td>22</td>
<td>5.31</td>
<td>976</td>
<td>170/450</td>
<td>04:04:37</td>
<td>2.8</td>
<td>4</td>
<td>04:05:30</td>
</tr>
<tr>
<td>23</td>
<td>5.32</td>
<td>955</td>
<td>170/450</td>
<td>04:10:16</td>
<td>2.0</td>
<td>3</td>
<td>04:11:15</td>
</tr>
<tr>
<td>24</td>
<td>5.32</td>
<td>947</td>
<td>170/450</td>
<td>04:15:05</td>
<td>12.6</td>
<td>4</td>
<td>04:16:00</td>
</tr>
<tr>
<td>25</td>
<td>5.32</td>
<td>945</td>
<td>170/450</td>
<td>04:18:51</td>
<td>3.0</td>
<td>4</td>
<td>04:20:00</td>
</tr>
<tr>
<td>26</td>
<td>5.31</td>
<td>941</td>
<td>170/450</td>
<td>04:21:37</td>
<td>3.6</td>
<td>4</td>
<td>04:23:30 04:31:10</td>
</tr>
<tr>
<td>27</td>
<td>5.31</td>
<td>940</td>
<td>170/450</td>
<td>04:28:19</td>
<td>0.5</td>
<td>4</td>
<td>04:31:10</td>
</tr>
<tr>
<td>28</td>
<td>5.30</td>
<td>947</td>
<td>170/450</td>
<td>04:55:10</td>
<td>21.2</td>
<td>5</td>
<td>05:00:00</td>
</tr>
<tr>
<td>29</td>
<td>5.32</td>
<td>937</td>
<td>170/450</td>
<td>05:00:13</td>
<td>11.6</td>
<td>5</td>
<td>05:00:30</td>
</tr>
<tr>
<td>30</td>
<td>5.31</td>
<td>951</td>
<td>170/450</td>
<td>05:42:29</td>
<td>13.1</td>
<td>5</td>
<td>05:50:10</td>
</tr>
<tr>
<td>31</td>
<td>5.31</td>
<td>958</td>
<td>170/450</td>
<td>05:48:59</td>
<td>6.5</td>
<td>5</td>
<td>05:59:50</td>
</tr>
<tr>
<td>32</td>
<td>5.29</td>
<td>970</td>
<td>170/450</td>
<td>05:13:28</td>
<td>1.0</td>
<td>5</td>
<td>05:18:30</td>
</tr>
</tbody>
</table>

✓ 3) After sampling flask 32, close flasks 17-32
UTC: 05:18
Trap T: 40

\[NWSH \] (start) \[\text{(Pencil is preferred)} \] \[Dips (Alt ↑, Time →) \] \[\text{(end) } NWA \]
III. At the end of the sampling
 1) Turn Pumps breaker off
 2) Ensure all flask valves closed

IV. Post-flight
 1) Remove traps
 2) Plug holes in dewar lid
 3) Download flask sampling data to laptop and pen drive
 4a) Turn off Mains breaker 4b) Valve box breaker 4c) 28V breaker
 5) Empty beads from upstream trap into ‘wet’ bead container to dry
 6) Open downstream trap and set upright
 7) ftp *.tab, and MED_* Notes.txt files for this flight to the ao2raw directory on catalog.eol.ucar.edu (or email if ftp does not work)
 8) email a scan of this checksheet to BBS (or fax if scanner not available)

V. Day after flight
 1) Transfer beads from downstream trap into upstream trap
 2) Unload flasks. Box #1: III Box #2: 7
MEDUSA leak check procedures

Flask Leak Check Procedure #1:

1. 28 V breaker on, Valve box on, Pump box on
2. Ensure Box #1 = 1, Box #2 = 1, 6-way = odd, Bypass on
3. Pup Ctrl Closed, Pdn Ctrl Open, Pump On - pull down bypass line for 1 minute
4. If necessary, “Clear All” (after being sure data from last flight secure on laptop)
5. Adjust pre purge time to 20 seconds (Plan Code d)
6. Toggle between bypass on/off 6 times over 1 min to pull PSA down to < 200
8. Save PNGs of AEROS P, Flow/Stat to laptop (YYMMDD_RF##_Leakcheck1.png)
9. Close Pdn, turn pumps off (will leave in position 1)
10. Turn bypass on

Flask Leak Check Procedure #2:

1. “Clear All”
2. Valve box off, main breaker off then on to reset, then valve box back on
3. Ensure AEROS is running with MEDP1, MEDP2, MED_Psa, MEDPBYP recording
4. Open Pdn, turn pumps on and evacuate sample and bypass (toggle 6 times).
5. Close Pdn and turn pumps off
6. Adjust pre purge time to 20 seconds
7. Run 20-second pre purge to check all flask downstream tubing Ps
8. Record times for AEROS matching. Start: 01:47:00 Finish: 20:48:40
9. Save PNGs of AEROS P/Flow/Stat to laptop (YYMMDD_RF##_Leakcheck2.png)
10. Turn bypass on

Bypass / System Leak Check Procedure:

1. Ensure bypass on, close PC1 and open PC2
2. Turn on pump breaker and let run for 1 minute
3. Verify Pup ~ 10, Pdown ~160, Pbypass ~160
4. Switch PC2 to closed and turn off pump
5. Wait 15 seconds and note Pu, Pd, Pb in table below
6. After 1 minute, record values again.
7. After 5 minutes, record values again
8. If Pdown and Pbypass < 2 torr/5 mins, skip to 11
9. If values are not ok, turn PC1/PC2 to auto, run gas for 15 seconds, close PC2 for 1 second, and then shut off pump to pressurize system in bypass. Snoop trap fittings, and fittings between and to boxes, and fix/tighten as necessary
10. Return PC1 and PC2 to auto

<table>
<thead>
<tr>
<th>Time (UTC)</th>
<th>Pup</th>
<th>Pdn</th>
<th>Pbypass</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>20:55:00</td>
<td>3</td>
<td>171</td>
<td>173</td>
<td>(screwed)</td>
</tr>
<tr>
<td>20:56:00</td>
<td>4</td>
<td>171</td>
<td>174</td>
<td></td>
</tr>
<tr>
<td>20:57:00</td>
<td>5</td>
<td>171</td>
<td>174</td>
<td></td>
</tr>
<tr>
<td>21:05:00</td>
<td>12</td>
<td>172</td>
<td>174</td>
<td></td>
</tr>
</tbody>
</table>
NCAR/SCRIPPS MEDUSA Checklist

V. 2011.06.12

I. Preflight
A. Day(s) before flight

1) Prepare new traps w/ clean beads filled to 2" up from the bottom and bring to plane
2) Install new traps
3) Load flasks, confirm old and record new flask IDs, and inspect o-rings
4) Record Flask Box Numbers: Box #1 111 Box #2 17
5) Install flask box retaining pins
6) Connect plumbing. Confirm lines are correctly installed with red label up

a) Replace cover shields and (b) complete rack book
8) Record flask IDs into an Excel file on laptop (MED_YYMMDD_RF##.xls)
9) If necessary, download data from previous flight to laptop and pen drive
10) Check that flask table is clear. If not, “clear all”
11) Complete flask leak check procedure #1 Start UTC 00:00:00
12) Wait as long as possible, 1-hour preferred, then complete flask leak check procedure #2 Start UTC 01:00:02
13) Pull bypass pressure down (PC2 open), then pumps off and PC2 closed
14) Record Ps: Pup ≤ Pdown ≤18 Pbypass ≤14 then all power off

Flask ID Table (View from Front of Box)

<table>
<thead>
<tr>
<th>Flask IDs</th>
<th>Flask IDs</th>
<th>Flask IDs</th>
<th>Flask IDs</th>
<th>Flask IDs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1006</td>
<td>1277</td>
<td>1342</td>
<td>1349</td>
<td></td>
</tr>
<tr>
<td>1185</td>
<td>1276</td>
<td>1178</td>
<td>1140</td>
<td></td>
</tr>
<tr>
<td>1138</td>
<td>1069</td>
<td>1054</td>
<td>1113</td>
<td></td>
</tr>
<tr>
<td>1027</td>
<td>1160</td>
<td>1187</td>
<td>1075</td>
<td></td>
</tr>
<tr>
<td>1120</td>
<td>1067</td>
<td>1181</td>
<td>1232</td>
<td></td>
</tr>
<tr>
<td>1150</td>
<td>1227</td>
<td>1016</td>
<td>1253</td>
<td></td>
</tr>
<tr>
<td>1099</td>
<td>1242</td>
<td>1019</td>
<td>1198</td>
<td></td>
</tr>
<tr>
<td>1238</td>
<td>1127</td>
<td>1144</td>
<td>1292</td>
<td></td>
</tr>
</tbody>
</table>

One valve completely open for extra time
B. 2-hours before take-off: Dry ice and Sampler Set-up

1. Load dry ice into dewar 0.5" from lid
2. Ensure that MEDUSA valve control key is in place
3. 28 V breaker on, Valve box on, Main breaker on
4. Record P / Δ: Pup $\frac{642}{654}$, Pdown $\frac{654}{477}$, Pbypass $\frac{654}{477}$
5. Sync MEDUSA clock with clock on laptop +/- 1 sec
6. Connect traps if not already
7. Ensure VLV1 = 1, VLV2 = 1, VLV3 = odd, bypass on, pumps off
8. Open all flask stopcocks 2 half turns
9a) Re-install splinter shields
9b) Complete rack book
10. Confirm P upstream, P downstream, prepurge T, and min flush T settings
 Pup $\frac{130}{450}$, Pdown $\frac{450}{450}$, Pbypass $\frac{450}{120}$
11. Verify that no values are blinking on screen
12. Note trap temperature
13. Complete bypass / system leak check
14. Ensure both controllers are to auto
15. Turn pumps on
16. Verify pressures are controlling and flows as expected
17. Adjust flight code to 1 (130/580/30) 125/620/45
18. If necessary, “Clear All” (after being sure data from last flight copied)
19. Pump breaker off (PB and VB stay on)
20. Pup $\frac{130}{450}$, Pdown $\frac{450}{450}$, Pbypass $\frac{450}{120}$

II. In flight

A. Immediately after take-off
1. Turn pump breaker on
2. Verify pressures/flows agree with previous values from I.B.17.
3. Pup $\frac{130}{450}$, Pdown $\frac{450}{450}$, Pbypass $\frac{450}{120}$
4. Verify that Vstat2, CO2, and H2O are all reading correctly and no values on screen. If sampling schedule allows, let CO2 and H2O stabilize
5. Start pre-purge
6. Note trap temperature
7. Record png of prepurge: (YYMMDD_rf##_prepurge) File: 110630_rf07

B. Sample 45 secs after desired altitude at 3 SLPM (1:15 at 1.8 SLPM), and record values in chart below (nominal kft = 1, 5, 10, 15, 21, 28, 36, and 46)

Whenever possible, favor flushing a flask as long as reasonable possible.
If pilots ascend to over 41 kft on initial, switch to flight plan 3 (90/690/300) for at least the top samples
After first dive (40 kft to 1000 ft) is finished, adjust flight plan to 2 (180/400/120)
<table>
<thead>
<tr>
<th>Pos</th>
<th>Flow (V)</th>
<th>Psa (torr)</th>
<th>P Setpts</th>
<th>End Time</th>
<th>PALTF</th>
<th>Profile #</th>
<th>Notes/Closed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.34</td>
<td>917</td>
<td>170/450</td>
<td>00:29:37</td>
<td>13.6</td>
<td>1</td>
<td>00:30:45</td>
<td>C60 PROFILE</td>
</tr>
<tr>
<td>2</td>
<td>5.34</td>
<td>912</td>
<td>170/450</td>
<td>00:33:40</td>
<td>7.7</td>
<td>1</td>
<td>00:34:10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5.32</td>
<td>903</td>
<td>170/450</td>
<td>00:37:27</td>
<td>2.6</td>
<td>1</td>
<td>00:41:30</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5.32</td>
<td>904</td>
<td>170/450</td>
<td>00:40:05</td>
<td>100.4</td>
<td>1/2</td>
<td>00:41:55</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5.33</td>
<td>910</td>
<td>170/450</td>
<td>00:43:36</td>
<td>6.1</td>
<td>2</td>
<td>00:44:00</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5.33</td>
<td>910</td>
<td>170/450</td>
<td>00:47:01</td>
<td>11.2</td>
<td>2</td>
<td>00:47:45</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>5.33</td>
<td>910</td>
<td>170/450</td>
<td>00:50:43</td>
<td>16.8</td>
<td>2</td>
<td>00:51:15</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>5.33</td>
<td>909</td>
<td>170/450</td>
<td>00:54:46</td>
<td>27.0</td>
<td>2</td>
<td>After 1st dive => Flight plan 2</td>
<td>00:55:15</td>
</tr>
<tr>
<td>9</td>
<td>5.34</td>
<td>909</td>
<td>170/450</td>
<td>00:59:32</td>
<td>24.1</td>
<td>2</td>
<td>01:00:15</td>
<td>125/620 @ 01:00:23</td>
</tr>
<tr>
<td>10</td>
<td>4.73</td>
<td>826</td>
<td>125/620</td>
<td>01:04:17</td>
<td>35.5</td>
<td>2</td>
<td>01:05:25</td>
<td>PURGE extr! one DIP</td>
</tr>
<tr>
<td>11</td>
<td>4.73</td>
<td>832</td>
<td>125/620</td>
<td>01:08:17</td>
<td>40</td>
<td>2</td>
<td>01:16:00</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>5.34</td>
<td>908</td>
<td>170/450</td>
<td>02:25:12</td>
<td>100.0</td>
<td>3</td>
<td>02:26:00</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>5.34</td>
<td>913</td>
<td>170/450</td>
<td>02:32:58</td>
<td>13.4</td>
<td>3</td>
<td>02:33:45</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>5.34</td>
<td>911</td>
<td>170/450</td>
<td>02:39:07</td>
<td>22.5</td>
<td>3</td>
<td>02:40:00</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>5.33</td>
<td>925</td>
<td>170/450</td>
<td>02:43:55</td>
<td>22.8</td>
<td>3</td>
<td>02:46:00</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>5.32</td>
<td>908</td>
<td>170/450</td>
<td>03:13:39</td>
<td>1000</td>
<td>4</td>
<td>03:14:30</td>
<td></td>
</tr>
</tbody>
</table>

1) After sampling flask 16, close flasks 1-16

2a) Turn Pump off

2b) Replace upstream trap

2c) Turn pump back on

UTC: 03:17
Trap T: 40

5) After sampling flask 32, close flasks 17-32

UTC: 06:17
Trap T: 40.1

Pencil is preferred

Dips (Alt ↑, Time →)

(end) PD601

(start)
III. At the end of the sampling
 1) Turn Pumps breaker off
 2) Ensure all flask valves closed

UTC 06:13:50

IV. Post-flight
 1) Remove traps
 2) Plug holes in dewar lid
 3) Download flask sampling data to laptop and pen drive
 4a) Turn off Mains breaker 4b) Valve box breaker 4c) 28V breaker
 5) Empty beads from upstream trap into ‘wet’ bead container to dry
 6) Open downstream trap and set upright
 7) ftp *.*tab, and MED_*.Notes.txt files for this flight to the ao2raw directory on
catalog.eol.ucar.edu (or email if ftp does not work)
 8) email a scan of this checksheet to BBS (or fax if scanner not available)

V. Day after flight
 1) Transfer beads from downstream trap into upstream trap
 2) Unload flasks. Box #1: ** 23** Box #2: ** 107**
MEDUSA leak check procedures

Flask Leak Check Procedure #1:

1. 28 V breaker on, Valve box on, Pump box on
2. Ensure Box #1 = 1, Box #2 = 1, 6-way = odd, Bypass on
3. Pup Ctrl Closed, Pdn Ctrl Open, Pump On - pull down bypass line for 1 minute
4. If necessary, “Clear All” (after being sure data from last flight secure on laptop)
 - Adjust pre purge time to 20 seconds
 - Toggle between bypass on/off 6 times over 1-min to pull PSA down to < 200
 - Run 20-second pre purge to evacuate lines. Start: 23:56:25 Finish: 00:12:37
 - Save PNGs of AEROS P flow/Stat to laptop (YYMMDD_RF##_Leakcheck1.png)
 - Close Pdn, turn pumps off (will leave in position 1)
10. Turn bypass on

Flask Leak Check Procedure #2:

1. “Clear All”
2. Valve box off, main breaker off then on to reset, then valve box back on
3. Ensure AEROS is running with MEDP1, MEDP2, MED Psao, MEDPYPB recording
4. Open Pdn, turn pumps on and evacuate sample and bypass (toggle 6 times). 25 155 156
5. Close Pdn and turn pumps off
6. Adjust pre purge time to 20 seconds
7. Run 20-second pre purge to check all flask downstream tube Ps
8. Record times for AEROS matching. Start: 01:02:10 Finish: 01:17:05
9. Save PNGs of AEROS P Flow/Stat to laptop (YYMMDD_RF##_Leakcheck2.png)
10. Turn bypass on

Bypass / System Leak Check Procedure:

1. Ensure bypass on, close PC1 and open PC2
2. Turn on pump breaker and let run for 1 minute
3. Verify Pup ~ 10, Pdown ~160, Pbypass ~160
4. Switch PC2 to closed and turn off pump
5. Wait 15 seconds and note Pu, Pd, Pb in table below
6. After 1 minute, record values again.
7. After 5 minutes, record values again.
8. If Pdown and Pbypass <2 torr/5 mins, skip to 11
9. If values are not ok, turn PC1/PC2 to auto, run gas for 15 seconds, close PC2 for 1 second, and then shut off pump to pressurize system in bypass. Snoop trap fittings, and fittings between and to boxes, and fix/tighten as necessary
10. Return PC1 and PC2 to auto

<table>
<thead>
<tr>
<th>Time (UTC)</th>
<th>Pup</th>
<th>Pdn</th>
<th>Pbypass</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>23:05:30</td>
<td>4</td>
<td>172</td>
<td>171</td>
<td></td>
</tr>
<tr>
<td>23:11:30</td>
<td>10</td>
<td>173</td>
<td>172</td>
<td></td>
</tr>
</tbody>
</table>
I. Preflight
 A. Day(s) before flight
 - Prepare new traps w/ clean beads filled to 2" up from the bottom and bring to plane
 - Install new traps
 - Load flasks, confirm old and record new flask IDs, and inspect o-rings
 - Record Flask Box Numbers: Box #1 123, Box #2 107
 - Install flask box retaining pins
 - Connect plumbing. Confirm lines are correctly installed with red label up
 - Replace cover shields and (b) complete rack book
 - Record flask IDs into an Excel file on laptop (MED_YYMMDD_RF##.xls)
 - If necessary, download data from previous flight to laptop and pen drive
 - Check that flask table is clear. If not, “clear all”
 - Complete flask leak check procedure #1
 - Wait as long as possible, 1-hour preferred, then complete flask leak check procedure #2
 - Pull bypass pressure down (PC2 open), then pumps off and PC2 closed
 - Record Ps: Pup 6, Pdown 123, Pbypass 147, then all power off

Flask ID Table (View from Front of Box)

<table>
<thead>
<tr>
<th>No.</th>
<th>ID</th>
<th>Chk</th>
<th>Arrows</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>1428</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1438</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1121</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1214</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1285</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1346</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1035</td>
<td>✔</td>
<td>1452</td>
</tr>
<tr>
<td>3</td>
<td>1243</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1249</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1457</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1124</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1373</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1347</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1202</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1329</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1189</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1206</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1336</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1148</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>1393</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1281</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>1064</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>1030</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>1208</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1136</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>1014</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>1403</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>1073</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1156</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>1008</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>1107</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>1133</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Correction to note 1243 replacing 1452

1452/2 Broken Threads on Plunger
B. 2-hours before take-off: Dry ice and Sampler Set-up

- Load dry ice into dewar 0.5" from lid
- Ensure that MEDUSA valve control key is in place
- 28 V breaker on, Valve box on, Main breaker on
- Record P/Δ: Pup 466 / Pdown 512 Lb; P bypass 511 / +334
- Sync MEDUSA clock with clock on laptop +/- 1 sec
 MEDUSA time UTC 23:59:01 Laptop time UTC 23:58:01
- Connect traps if not already
- Ensure VL1 = 1, VL2 = 1, VL3 = odd, bypass on, pumps off
- Open all flask stopcocks 2 half turns
- Flasks opened by: JPD
- Re-install splinter shields (9b) Complete rack book
- Confirm P upstream, P downstream, pre-purge T, and min flush T settings
 Pupset 130 Pdownset 450 pre-purgeT 45 flushT 120
- Verify that no values are blinking on screen
- Note trap temperature
- Complete bypass / system leak check
- Ensure both controllers are auto
- Turn pumps on

- Verify pressures are controlling and flow is as expected
 Pup 161 Pdown 419 P bypass 752 Flow 4200
- Adjust flight code to 1(120/80/30) 125/620/45
- If necessary, “Clear All” (after being sure data from last flight copied)
- Pump breaker off (PB and VB stay on)

II. In flight

A. Immediately after take-off

- Take-off time UTC 01:44:12

- Turn pump breaker on
- Verify pressures/flows agree with previous values from I.B.17.
 Pup 125 Pdown 620 P bypass 745 Flow 2550
- Verify that Vstat2, CO₂, and H₂O are all reading correctly and no values
 blinking on screen. If sampling schedule allows, let CO₂ and H₂O stabilize
- Start pre-purge
- Note trap temperature
 Trap T: 38.9
- Record png of pre-purge: (YYMMDD_rf##_prepurge) File: 040407_002808-prepurge.png

B. Sample 45 secs after desired altitude at 3 SLP (1:15 at 1.8 SLP), and record values in chart
below (nominal kft = 1, 5, 10, 15, 21, 28, 36, and 46)
 Whenever possible, favor flushing a flask as long as reasonable possible
 If pilots ascend to over 41 kft on initial, switch to flight plan 3 (90/690/300) for at least the
top samples
 After first dive (40 kft to 1000 ft) is finished, adjust flight plan to 2 (180/400/120)
<table>
<thead>
<tr>
<th>Pos</th>
<th>Flow (V)</th>
<th>Psa (torr)</th>
<th>PC Setpts</th>
<th>End Time</th>
<th>PALTF</th>
<th>Profile #</th>
<th>Notes</th>
<th>Location</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.67</td>
<td>831</td>
<td>125/620</td>
<td>02:33:30</td>
<td>40</td>
<td>1</td>
<td></td>
<td>02:39:10</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4.70</td>
<td>831</td>
<td>125/620</td>
<td>03:21:00</td>
<td>40</td>
<td>1</td>
<td></td>
<td>03:12:30</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4.90</td>
<td>830</td>
<td>125/620</td>
<td>03:26:50</td>
<td>40</td>
<td>1</td>
<td></td>
<td>03:27:45</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4.71</td>
<td>833</td>
<td>125/620</td>
<td>03:43:56</td>
<td>40</td>
<td>1</td>
<td></td>
<td>03:44:50</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4.72</td>
<td>835</td>
<td>125/620</td>
<td>03:51:54</td>
<td>40</td>
<td>1</td>
<td></td>
<td>03:52:45</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4.71</td>
<td>839</td>
<td>125/620</td>
<td>04:02:17</td>
<td>40</td>
<td>1</td>
<td></td>
<td>04:03:10</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4.72</td>
<td>832</td>
<td>125/620</td>
<td>04:12:55</td>
<td>40</td>
<td>1</td>
<td></td>
<td>04:13:40</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4.72</td>
<td>832</td>
<td>125/620</td>
<td>04:24:49</td>
<td>40</td>
<td>1</td>
<td></td>
<td>04:25:30</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>4.71</td>
<td>830</td>
<td>125/620</td>
<td>04:32:08</td>
<td>33</td>
<td>2</td>
<td></td>
<td>04:32:50</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>4.65</td>
<td>818</td>
<td>125/620</td>
<td>04:57:28</td>
<td>25.4</td>
<td>2</td>
<td></td>
<td>04:58:10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>4.61</td>
<td>812</td>
<td>125/620</td>
<td>04:41:32</td>
<td>19.3</td>
<td>2</td>
<td></td>
<td>04:42:20</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>4.61</td>
<td>814</td>
<td>125/620</td>
<td>04:45:29</td>
<td>13.3</td>
<td>2</td>
<td></td>
<td>04:46:10</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>4.60</td>
<td>812</td>
<td>125/620</td>
<td>04:48:49</td>
<td>8.3</td>
<td>2</td>
<td></td>
<td>04:49:20</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>4.62</td>
<td>814</td>
<td>125/620</td>
<td>04:52:48</td>
<td>2.3</td>
<td>2</td>
<td></td>
<td>04:53:15</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>4.61</td>
<td>818</td>
<td>125/620</td>
<td>04:57:40</td>
<td>50.4</td>
<td>2</td>
<td></td>
<td>04:58:30</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>4.68</td>
<td>828</td>
<td>125/620</td>
<td>05:21:07</td>
<td>2.8</td>
<td>3</td>
<td></td>
<td>05:21:50</td>
<td></td>
</tr>
</tbody>
</table>

- 1) After sampling flask 16, close flasks 1-16
- 2a) Turn Pump off
- 2b) Replace upstream trap
- 2c) Turn pump back on

<table>
<thead>
<tr>
<th>Pos</th>
<th>Flow (V)</th>
<th>Psa (torr)</th>
<th>PC Setpts</th>
<th>End Time</th>
<th>PALTF</th>
<th>Profile #</th>
<th>Notes</th>
<th>Location</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>4.64</td>
<td>813</td>
<td>125/620</td>
<td>05:26:50</td>
<td>19.7</td>
<td>3</td>
<td></td>
<td>05:28:10</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>4.60</td>
<td>835</td>
<td>125/620</td>
<td>05:31:55</td>
<td>12.0</td>
<td>3</td>
<td></td>
<td>05:32:45</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>4.60</td>
<td>841</td>
<td>125/620</td>
<td>05:36:37</td>
<td>6.5</td>
<td>3</td>
<td></td>
<td>05:37:00</td>
<td>05:37:00</td>
</tr>
<tr>
<td>20</td>
<td>4.59</td>
<td>825</td>
<td>125/620</td>
<td>05:38:42</td>
<td>1.7</td>
<td>3</td>
<td></td>
<td>05:39:45</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>4.59</td>
<td>846</td>
<td>125/620</td>
<td>05:41:42</td>
<td>50.0</td>
<td>3</td>
<td></td>
<td>05:42:00</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4.64</td>
<td>859</td>
<td>125/620</td>
<td>06:05:20</td>
<td>28.8</td>
<td>4</td>
<td></td>
<td>06:07:15</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>4.58</td>
<td>831</td>
<td>125/620</td>
<td>06:15:14</td>
<td>12.7</td>
<td>4</td>
<td></td>
<td>06:16:15</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>4.57</td>
<td>829</td>
<td>125/620</td>
<td>06:26:32</td>
<td>500.4</td>
<td>4/5</td>
<td></td>
<td>06:27:45</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>4.56</td>
<td>823</td>
<td>125/620</td>
<td>06:32:81</td>
<td>6.8</td>
<td>5</td>
<td></td>
<td>06:33:45</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>4.57</td>
<td>825</td>
<td>125/620</td>
<td>06:33:50</td>
<td>12.5</td>
<td>5</td>
<td></td>
<td>06:34:15</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>4.61</td>
<td>835</td>
<td>125/620</td>
<td>06:37:40</td>
<td>19.0</td>
<td>5</td>
<td></td>
<td>06:38:45</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>4.62</td>
<td>837</td>
<td>125/620</td>
<td>06:40:58</td>
<td>24.7</td>
<td>5</td>
<td></td>
<td>06:42:00</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>4.66</td>
<td>839</td>
<td>125/620</td>
<td>06:46:20</td>
<td>32.5</td>
<td>5</td>
<td></td>
<td>06:47:10</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>4.68</td>
<td>853</td>
<td>125/620</td>
<td>06:51:06</td>
<td>39.1</td>
<td>5</td>
<td></td>
<td>06:52:40</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>4.68</td>
<td>862</td>
<td>125/620</td>
<td>06:58:06</td>
<td>41</td>
<td>5</td>
<td></td>
<td>06:59:20</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>4.67</td>
<td>867</td>
<td>125/620</td>
<td>07:01:51</td>
<td>38.9</td>
<td>5</td>
<td></td>
<td>07:02:57</td>
<td></td>
</tr>
</tbody>
</table>

- 3) After sampling flask 32, close flasks 17-32

UTC: 05:21
Trap T: 39.9
III. At the end of the sampling
 1) Turn Pumps breaker off
 2) Ensure all flask valves closed

IV. Post-flight
 1) Remove traps
 2) Plug holes in dewar lid
 3) Download flask sampling data to laptop and pen drive
 4a) Turn off Mains breaker
 4b) Valve box breaker
 4c) 28V breaker
 5) Empty beads from upstream trap into ‘wet’ bead container to dry
 6) Open downstream trap and set upright
 7) ftp *.tab, and MED_*_Notes.txt files for this flight to the ao2raw directory on catalog.eol.ucar.edu (or email if ftp does not work)
 8) email a scan of this checksheet to BBS (or fax if scanner not available)

V. Day after flight
 1) Transfer beads from downstream trap into upstream trap
 2) Unload flasks. Box #1: 114
 Box #2: 105
MEDUSA leak check procedures

** Flask Leak Check Procedure #1:**

1. 28 V breaker on, Valve box on, Pump box on
2. Ensure Box #1 = 1, Box #2 = 1, 6-way = odd, Bypass on
3. Pup Ctrl Closed, Pdn Ctrl Open, Pump On - pull down bypass line for 1 minute
4. If necessary, “Clear All” (after being sure data from last flight secure on laptop)
5. Adjust prepurge time to 20 seconds
6. Toggle between bypass on/off 6 times over 1-min to pull PSA down to < 200
7. Run 20-second prepurge to evacuate lines. Start: 01:06:35 Finish: 01:22
8. Save PNGs of AEROS P,Flow/Stat to laptop (YYMMDD_RF##_Leakcheck1.png)
9. Close Pdn, turn pumps off (will leave in position 1)
10. Turn bypass on

** Flask Leak Check Procedure #2:**

1. “Clear All”
2. Valve box off, main breaker off then on to reset, then valve box back on
3. Ensure AEROS is running with MEDP1,MEDP2, MED_Psa, MEDPBYP recording
4. Open Pdn, turn pumps on and evacuate sample and bypass (toggle 6 times).
5. Close Pdn and turn pumps off
6. Adjust prepurge time to 20 seconds
7. Run 20-second prepurge to check all flask downstream tube Ps
8. Record times for AEROS matching. Start: 02:09 Finish: 02:24:20
9. Save PNGs of AEROS P/Flow/Stat to laptop (YYMMDD_RF##_Leakcheck2.png)
10. Turn bypass on

Bypass / System Leak Check Procedure:

1. Ensure bypass on, close PC1 and open PC2
2. Turn on pump breaker and let run for 1 minute
3. Verify Pup ~ 10, Pdown ~160, Pbypass ~160
4. Switch PC2 to closed and turn off pump
5. Wait 15 seconds and note Pu, Pd, Pb in table below
6. After 1 minute, record values again
7. After 5 minutes, record values again
8. If Pdown and Pbypass <2 torr/5 mins, skip to 11
9. If values are not ok, turn PC1/PC2 to auto, run gas for 15 seconds, close PC2 for 1 second, and then shut off pump to pressurize system in bypass. Snoop trap fittings, and fittings between and to boxes, and fix/tighten as necessary
10. Return PC1 and PC2 to auto

<table>
<thead>
<tr>
<th>Time (UTC)</th>
<th>Pup</th>
<th>Pdn</th>
<th>Pbypass</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:10:30</td>
<td>5</td>
<td>140</td>
<td>172</td>
<td></td>
</tr>
<tr>
<td>0:11:30</td>
<td>6</td>
<td>140</td>
<td>172</td>
<td></td>
</tr>
<tr>
<td>0:15:30</td>
<td>10</td>
<td>171</td>
<td>173</td>
<td></td>
</tr>
</tbody>
</table>
NCAR/SCRIPPS MEDUSA Checklist V. 2011.06.12

I. Preflight

A. Day(s) before flight

1. Prepare new traps w/ clean beads filled to 2” up from the bottom and bring to plane
2. Install new traps
3. Load flasks, confirm old and record new flask IDs, and inspect o-rings
4. Record Flask Box Numbers: Box #1 114 Box #2 105
5. Install flask box retaining pins
6. Connect plumbing. Confirm lines are correctly installed with red label up
7a) Replace cover shields and b) complete rack book
8. Record flask IDs into an Excel file on laptop (MED_YYMMDD_RF##.xls)
9. If necessary, download data from previous flight to laptop and pen drive
10. Check that flask table is clear. If not, “clear all”
11. Complete flask leak check procedure #1 Start UTC 00:00
12. Wait as long as possible, 1-hour preferred, then complete flask leak check procedure #2 Start UTC 00:10
13. Pull bypass pressure down (PC2 open), then pumps off and PC2 closed
14. Record Ps: Pup 170 Pdown 170 Pbypass 173 then all power off

Flask ID Table (View from Front of Box)

<table>
<thead>
<tr>
<th></th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>1215</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1437</td>
<td>1162</td>
<td>1271</td>
<td>1265</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1180</td>
<td>1152</td>
<td>1319</td>
<td>1415</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1056</td>
<td>1092</td>
<td>1304</td>
<td>1396</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1192</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1151</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1174</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1079</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
</tr>
</tbody>
</table>
B. 2-hours before take-off: Dry ice and Sampler Set-up

1) Load dry ice into dewar 0.5" from lid UTC 02:35
2) Ensure that MEDUSA valve control key is in place
3) 28 V breaker on, Valve box on, Main breaker on
4) Record P / ΔP: Pup 431 / 126 Pdown 173 / 83 Pbypass 479 / 4306
5) Sync MEDUSA clock with clock on laptop +/- 1 sec
 MEDUSA time UTC 01:03:05 Laptop time UTC 01:05:05
6) Connect traps if not already
7) Ensure VLV1 = 1, VLV2 = 1, VLV3 = odd, bypass on, pumps off
8) Open all flask stopcocks 2 half turns Flasks opened by: 2D 13
9a) Re-install splinter shields 9b) Complete rack book
10) Confirm P upstream, P downstream, prepurge T, and min flush T settings
 Pupset 120 Pdownset 450 prepurgeT 45 flushT 120
11) Verify that no values are blinking on screen
12) Note trap temperature Trap T: 39.9
13) Complete bypass / system leak check
14) Ensure both controllers are to auto
15) Turn pumps on
16) Verify pressures are controlling and flow is as expected
 Pup 169 Pdown 450 Pbypass 750 Flow 4200
 01:21:09 171 178 30 01:22:30 8 172 178
17) Adjust flight code to 1 (130/580/30)
18) If necessary, “Clear All” (after being sure data from last flight copied)
19) Pump breaker off (PB and VB stay on)
20) Controllers to auto

II. In flight

A. Immediately after take-off

1) Turn pump breaker on 02:26:15
2) Verify pressures/flows agree with previous values from 1.B.17.
 Pup 124 Pdown 620 Pbypass 740 Flow 2500
3) Verify that Vstat2, CO2, and H2O are all reading correctly and no values
 blinking on screen. If sampling schedule allows, let CO2 and H2O stabilize
4) Start pre-purge UTC 02:27:18
5) Note trap temperature Trap T: 39.7
6) Record png of prepurge: (YYMMDD_r##_prepurge) File:

B. Sample 45 secs after desired altitude at 3 SLP (1:15 at 1.8 SLP), and record values in chart below (nominal kft = 1, 5, 10, 15, 21, 28, 36, and 46)
 Whenever possible, favor flushing a flask as long as reasonable possible
 If pilots ascend to over 41 kft on initial, switch to flight plan 3 (90/690/300) for at least the
 top samples
 After first dive (40 kft to 1000 ft) is finished, adjust flight plan to 2 (180/400/120)
<table>
<thead>
<tr>
<th>Pos</th>
<th>Flow (V)</th>
<th>Psa (torr)</th>
<th>PC Setpts</th>
<th>End Time</th>
<th>PALTF</th>
<th>Profile #</th>
<th>Notes</th>
<th>Closed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.63</td>
<td>826</td>
<td>125/620</td>
<td>03:11:05</td>
<td>4.0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4.67</td>
<td>824</td>
<td>125/620</td>
<td>03:14:26</td>
<td>4.0</td>
<td>1</td>
<td>03:13:45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4.61</td>
<td>820</td>
<td>125/620</td>
<td>03:22:52</td>
<td>30.1</td>
<td>1</td>
<td>03:23:45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4.59</td>
<td>818</td>
<td>125/620</td>
<td>03:26:00</td>
<td>25.6</td>
<td>1</td>
<td>03:26:30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4.59</td>
<td>818</td>
<td>125/620</td>
<td>03:30:08</td>
<td>19.3</td>
<td>1</td>
<td>03:31:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4.58</td>
<td>814</td>
<td>125/620</td>
<td>03:34:05</td>
<td>13.4</td>
<td>1</td>
<td>03:34:30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4.57</td>
<td>814</td>
<td>125/620</td>
<td>03:41:23</td>
<td>2.3</td>
<td>1</td>
<td>03:42:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4.57</td>
<td>813</td>
<td>125/620</td>
<td>03:44:52</td>
<td>0.5</td>
<td>1</td>
<td>After 1st dive => Flight plan 2/03:45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>4.56</td>
<td>812</td>
<td>125/620</td>
<td>03:52:19</td>
<td>11.6</td>
<td>1</td>
<td>03:52:45</td>
<td>(to fill in missing alt)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>5.29</td>
<td>893</td>
<td>170/450</td>
<td>04:32:05</td>
<td>0.5</td>
<td>2</td>
<td>04:33:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>5.27</td>
<td>891</td>
<td>170/450</td>
<td>04:47:16</td>
<td>8.4</td>
<td>2</td>
<td>04:53:15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>5.24</td>
<td>900</td>
<td>170/450</td>
<td>04:40:57</td>
<td>13.7</td>
<td>2</td>
<td>04:41:25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>5.30</td>
<td>902</td>
<td>170/450</td>
<td>04:43:26</td>
<td>17.4</td>
<td>2</td>
<td>04:44:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>5.30</td>
<td>902</td>
<td>170/450</td>
<td>04:46:48</td>
<td>22.6</td>
<td>2</td>
<td>04:47:45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>5.30</td>
<td>918</td>
<td>170/450</td>
<td>04:54:39</td>
<td>2.8</td>
<td>2</td>
<td>04:55:15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>5.30</td>
<td>907</td>
<td>170/450</td>
<td>05:33:21</td>
<td>2.8</td>
<td>3</td>
<td>05:39:30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) After sampling flask 16, close flasks 1-16

2a) Turn Pump off
2b) Replace upstream trap
2c) Turn pump back on

3) After sampling flask 32, close flasks 17-32

UTC: _ : _ Trap T: _ _

\(^3 \) After sampling flask 32, close flasks 17-32
UTC: _ _ Trap T: _ _
III. At the end of the sampling
 1) Turn Pumps breaker off
 2) Ensure all flask valves closed

IV. Post-flight
 1) Remove traps
 2) Plug holes in dewar lid
 3) Download flask sampling data to laptop and pen drive
 4a) Turn off Mains breaker (4b) Valve box breaker (4c) 28V breaker
 5) Empty beads from upstream trap into 'wet' bead container to dry
 6) Open downstream trap and set upright
 7) ftp *.tab, and MED_*_Notes.txt files for this flight to the ao2raw directory on catalog.eol.ucar.edu (or email if ftp does not work)
 8) email a scan of this check sheet to BBS (or fax if scanner not available)

V. Day after flight
 1) Transfer beads from downstream trap into upstream trap
 2) Unload flasks. Box #1: 13 Box #2 17

UTC 08: 03
MEDUSA leak check procedures

Flask Leak Check Procedure #1:
1) 28 V breaker on, Valve box on, Pump box on
2) Ensure Box #1 = 1, Box #2 = 1, 6-way = odd, Bypass on
3) Pup Ctrl Closed, Pdn Ctrl Open, Pump On - pull down bypass line for 1 minute
4) If necessary, “Clear All” (after being sure data from last flight secure on laptop)
5) Adjust prepurge time to 20 seconds
6) Toggle between bypass on/off 6 times over 1-min to pull PSA down to < 200
7) Run 20-second prepurge to evacuate lines. Start: 00:05:00 Finish: 00:25
8) Save PNGs of AEROS P,Flow/Stat to laptop (YYMMDD_RF##_Leakcheck1.png)
9) Close Pdn, turn pumps off (will leave in position 1)
10) Turn bypass on

Flask Leak Check Procedure #2:
1) “Clear All”
2) Valve box off, main breaker off then on to reset, then valve box back on
3) Ensure AEROS is running with MEDP1,MEDP2, MED_Psa, MEDPBYP recording
4) Open Pdn, turn pumps on and evacuate sample and bypass (toggle 6 times).
5) Close Pdn and turn pumps off
6) Adjust prepurge time to 20 seconds
7) Run 20-second prepurge to check all flask downstream tube Ps
8) Record times for AEROS matching. Start: 01:10:00 Finish: 01:23:45
9) Save PNGs of AEROS P/Flow/Stat to laptop (YYMMDD_RF##_Leakcheck2.png)
10) Turn bypass on

Bypass / System Leak Check Procedure:
1) Ensure bypass on, close PC1 and open PC2
2) Turn on pump breaker and let run for 1 minute
3) Verify Pup ~ 10, Pdown ~160, Pbypass ~160
4) Switch PC2 to closed and turn off pump
5) Wait 15 seconds and note Pu, Pd, Pb in table below
6) After 1 minute, record values again.
7) After 5 minutes, record values again
8) If Pdown and Pbypass <2 torr/5 mins, skip to 11
9) If values are not ok, turn PC1/PC2 to auto, run gas for 15 seconds, close PC2 for 1 second, and then shut off pump to pressurize system in bypass. Snoop trap fittings, and fittings between and to boxes, and fix/tighten as necessary
10) Return PC1 and PC2 to auto

<table>
<thead>
<tr>
<th>Time (UTC)</th>
<th>Pup</th>
<th>Pdn</th>
<th>Pbypass</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>01:11:30</td>
<td>8</td>
<td>167</td>
<td>174</td>
<td></td>
</tr>
<tr>
<td>01:12:30</td>
<td>12</td>
<td>167</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td>01:13:30</td>
<td>13</td>
<td>168</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td>01:14:30</td>
<td>14</td>
<td>168</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td>01:16:30</td>
<td>16</td>
<td>169</td>
<td>175</td>
<td></td>
</tr>
</tbody>
</table>
NCAR/SCRIPPS MEDUSA Checklist

V. 2011.06.12

I. Preflight

A. Day(s) before flight

Date (YYMMDD) = 110706

- Prepare new traps w/ clean beads filled to 2” up from the bottom and bring to plane
- Install new traps
- Load flasks, confirm old and record new flask IDs, and inspect o-rings
- Record Flask Box Numbers: Box #1 13 Box #2 12
- Install flask box retaining pins
- Connect plumbing. Confirm lines are correctly installed with red label up
- Replace cover shields and complete rack book
- Record flask IDs into an Excel file on laptop (MED_YYMMDD_RF##.xls)
- If necessary, download data from previous flight to laptop and pen drive
- Check that flask table is clear. If not, “clear all”
- Complete flask leak check procedure #1
- Start UTC 23:11
- Wait as long as possible, 1-hour preferred, then complete flask leak check procedure #2
- Start UTC 23:56
- Pull bypass pressure down (PC2 open), then pumps off and PC2 closed
- Record Ps: Pup 8 Pdown 175 Pbypass 10 then all power off

<table>
<thead>
<tr>
<th>Flask ID Table (View from Front of Box)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 1212</td>
</tr>
<tr>
<td>14 1094</td>
</tr>
<tr>
<td>15 1405</td>
</tr>
<tr>
<td>16 1045</td>
</tr>
<tr>
<td>17 1001</td>
</tr>
<tr>
<td>18 1177</td>
</tr>
<tr>
<td>19 1315</td>
</tr>
<tr>
<td>20 1122</td>
</tr>
</tbody>
</table>
B. 2-hours before take-off: Dry ice and Sampler Set-up
 1) Load dry ice into dewar 0.5” from lid
 2) Ensure that MEDUSA valve control key is in place
 3) 28 V breaker on, Valve box on, Main breaker on
 4) Record P / Δ: Pup 310 / 482 Pdown 186 / 124 Pbypass 510 / 200
 5) Sync MEDUSA clock with clock on laptop +/- 1 sec
 MEDUSA time UTC 14:12:03 Laptop time UTC 14:12:02
 6) Connect traps if not already
 7) Ensure VLV1 = 1, VLV2 = 1, VLV3 = odd, bypass on, pumps off
 8) Open all flask stopcocks 2 half turns
 Flasks opened by: JDB
 9a) Re-install splinter shields
 9b) Complete rack book
 10) Confirm P upstream, P downstream, pre-purge T, and min flush T settings
 P u p s e t 1 7 0
 P d o w n s e t 4 5 0
 p r e p u r g e T 4 5
 f l u s h T 1 2 0
 11) Verify that no values are blinking on screen
 12) Note trap temperature
 T r a p T : 3 9 . 9
 13) Complete bypass / system leak check
 14) Ensure both controllers are to auto
 15) Turn pumps on
 16) Verify pressures are controlling and flow is as expected
 P u p 1 6 9
 P d o w n 4 5 0
 P b y p a s s 7 1 2
 F l o w 4 0 0 0
 17) Adjust flight code to 1 (130/580/30)
 18) If necessary, “Clear All” (after being sure data from last flight copied)
 19) Pump breaker off (PB and VB stay on)
 20) PCs to closed

II. In flight
A. Immediately after take-off
 Take-off time UTC 15:33:52
 1) Turn pump breaker on
 T r a n s i t : 1 5 : 3 8 : 0 0
 2) Verify pressures/flows agree with previous values from I.B.17.
 P u p 1 2 4
 P d o w n 6 6 0
 P b y p a s s 7 5 9
 F l o w 2 5 0 0
 3) Verify that Vstat2, CO2, and H2O are all reading correctly and no values
 blinking on screen. If sampling schedule allows, let CO2 and H2O stabilize
 4) Start pre-purge
 5) Note trap temperature
 T r a p T : 3 8 . 6
 6) Record png of pre-purge: (YYMMDD_rf##_prepurge) File: 110710_rf10_prepurge_07_07.png

B. Sample 45 secs after desired altitude at 3 SLPM (1:15 at 1.8 SLPM), and record values in chart
 below (nominal kft = 1, 5, 10, 15, 21, 28, 36, and 46)
 Whenever possible, favor flushing a flask as long as reasonable possible
 If pilots ascend to over 41 kft on initial, switch to flight plan 3 (90/690/300) for at least the
 top samples
 After first dive (40 kft to 1000 ft) is finished, adjust flight plan to 2 (180/400/120)
<table>
<thead>
<tr>
<th>Pos</th>
<th>Flow (V)</th>
<th>Psa (torr)</th>
<th>PC Setpts</th>
<th>End Time</th>
<th>PALTF</th>
<th>Profile #</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.67</td>
<td>830</td>
<td>125/620</td>
<td>16:16:52</td>
<td>40</td>
<td>1</td>
<td>16:17:50</td>
</tr>
<tr>
<td>2</td>
<td>4.67</td>
<td>827</td>
<td>125/620</td>
<td>16:26:07</td>
<td>32.8</td>
<td>1</td>
<td>16:26:45</td>
</tr>
<tr>
<td>3</td>
<td>4.62</td>
<td>816</td>
<td>125/620</td>
<td>16:30:28</td>
<td>26.3</td>
<td>1</td>
<td>16:31:05</td>
</tr>
<tr>
<td>4</td>
<td>4.61</td>
<td>818</td>
<td>125/620</td>
<td>16:35:37</td>
<td>16.4</td>
<td>1</td>
<td>16:36:30</td>
</tr>
<tr>
<td>5</td>
<td>4.61</td>
<td>819</td>
<td>125/620</td>
<td>16:37:13</td>
<td>13.1</td>
<td>1</td>
<td>16:40:00</td>
</tr>
<tr>
<td>6</td>
<td>4.61</td>
<td>818</td>
<td>125/620</td>
<td>16:42:36</td>
<td>7.9</td>
<td>1</td>
<td>16:43:30</td>
</tr>
<tr>
<td>7</td>
<td>4.61</td>
<td>816</td>
<td>125/620</td>
<td>16:45:49</td>
<td>3.1</td>
<td>1</td>
<td>16:46:20</td>
</tr>
<tr>
<td>8</td>
<td>4.61</td>
<td>816</td>
<td>125/620</td>
<td>16:50:39</td>
<td>0.5</td>
<td>1</td>
<td>16:51:20</td>
</tr>
<tr>
<td>9</td>
<td>5.38</td>
<td>897</td>
<td>170/450</td>
<td>17:35:59</td>
<td>0.5</td>
<td>2</td>
<td>17:37:00</td>
</tr>
<tr>
<td>10</td>
<td>5.29</td>
<td>893</td>
<td>170/450</td>
<td>17:40:31</td>
<td>6.7</td>
<td>2</td>
<td>17:41:30</td>
</tr>
<tr>
<td>11</td>
<td>5.31</td>
<td>900</td>
<td>170/450</td>
<td>17:43:38</td>
<td>11.4</td>
<td>2</td>
<td>17:44:29</td>
</tr>
<tr>
<td>12</td>
<td>5.31</td>
<td>903</td>
<td>170/450</td>
<td>17:47:24</td>
<td>17.0</td>
<td>2</td>
<td>17:48:20</td>
</tr>
<tr>
<td>13</td>
<td>5.32</td>
<td>906</td>
<td>170/450</td>
<td>17:51:51</td>
<td>23.8</td>
<td>2</td>
<td>17:52:50</td>
</tr>
<tr>
<td>14</td>
<td>5.32</td>
<td>906</td>
<td>170/450</td>
<td>17:55:43</td>
<td>2.8</td>
<td>2</td>
<td>17:56:15</td>
</tr>
<tr>
<td>15</td>
<td>5.30</td>
<td>916</td>
<td>170/450</td>
<td>19:22:20</td>
<td>2.8</td>
<td>3</td>
<td>19:24:00</td>
</tr>
<tr>
<td>16</td>
<td>5.31</td>
<td>906</td>
<td>170/450</td>
<td>19:25:41</td>
<td>2.8</td>
<td>3</td>
<td>19:26:00</td>
</tr>
</tbody>
</table>

After sampling flask 16, close flasks 1-16

UTC: 19:26
Traps: 40.1

<table>
<thead>
<tr>
<th>Pos</th>
<th>Flow (V)</th>
<th>Psa (torr)</th>
<th>PC Setpts</th>
<th>End Time</th>
<th>PALTF</th>
<th>Profile #</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>5.30</td>
<td>912</td>
<td>170/450</td>
<td>19:30:46</td>
<td>19.4</td>
<td>3</td>
<td>19:32:00</td>
</tr>
<tr>
<td>18</td>
<td>5.28</td>
<td>961</td>
<td>170/450</td>
<td>19:34:27</td>
<td>13.2</td>
<td>3</td>
<td>19:35:30</td>
</tr>
<tr>
<td>19</td>
<td>5.28</td>
<td>936</td>
<td>170/450</td>
<td>19:37:24</td>
<td>4.8</td>
<td>3</td>
<td>19:38:30</td>
</tr>
<tr>
<td>20</td>
<td>5.29</td>
<td>938</td>
<td>170/450</td>
<td>19:40:26</td>
<td>8.3</td>
<td>3</td>
<td>19:41:30</td>
</tr>
<tr>
<td>21</td>
<td>5.27</td>
<td>958</td>
<td>170/450</td>
<td>19:44:21</td>
<td>0.5</td>
<td>3/4</td>
<td>19:45:20</td>
</tr>
<tr>
<td>22</td>
<td>5.27</td>
<td>961</td>
<td>170/450</td>
<td>19:48:02</td>
<td>6.4</td>
<td>4</td>
<td>19:49:00</td>
</tr>
<tr>
<td>23</td>
<td>5.25</td>
<td>945</td>
<td>170/450</td>
<td>19:50:50</td>
<td>11.5</td>
<td>4</td>
<td>19:51:50</td>
</tr>
<tr>
<td>24</td>
<td>5.28</td>
<td>937</td>
<td>170/450</td>
<td>19:54:21</td>
<td>17.3</td>
<td>4</td>
<td>19:55:20</td>
</tr>
<tr>
<td>25</td>
<td>5.29</td>
<td>937</td>
<td>170/450</td>
<td>19:57:31</td>
<td>22.3</td>
<td>4</td>
<td>19:58:30</td>
</tr>
<tr>
<td>26</td>
<td>5.20</td>
<td>933</td>
<td>170/450</td>
<td>20:02:11</td>
<td>29.1</td>
<td>4</td>
<td>20:03:10</td>
</tr>
<tr>
<td>27</td>
<td>3.82</td>
<td>977</td>
<td>90/110</td>
<td>20:07:22</td>
<td>38.7</td>
<td>4</td>
<td>20:08:20</td>
</tr>
<tr>
<td>28</td>
<td>3.90</td>
<td>903</td>
<td>90/110</td>
<td>20:26:45</td>
<td>44.4</td>
<td>4</td>
<td>20:28:00</td>
</tr>
<tr>
<td>29</td>
<td>3.92</td>
<td>904</td>
<td>90/110</td>
<td>20:34:01</td>
<td>44.4</td>
<td>4</td>
<td>20:35:00</td>
</tr>
<tr>
<td>30</td>
<td>3.84</td>
<td>900</td>
<td>90/110</td>
<td>21:13:18</td>
<td>4.5</td>
<td>5</td>
<td>21:15:05</td>
</tr>
<tr>
<td>31</td>
<td>5.29</td>
<td>957</td>
<td>170/450</td>
<td>21:24:52</td>
<td>24.7</td>
<td>5</td>
<td>21:26:00</td>
</tr>
<tr>
<td>32</td>
<td>5.28</td>
<td>970</td>
<td>125/620</td>
<td>21:28:12</td>
<td>4.9</td>
<td>5</td>
<td>21:30:30</td>
</tr>
</tbody>
</table>

After sampling flask 32, close flasks 17-32

UTC: 21:40
Traps: 40.1

Diagram:
- PMD (start)
- (Pencil is preferred)
- Dips (Alt ↑, Time →)
- (end) PANC

ArcheoPay

Notes:
- After 1st dive: Flight plan 2
- After 2nd dive:
 - 17:54:15:2 AM departure
 - Fell asleep
- Turn Pump off
- Replace upstream trap
- Turn pump back on
- 20:17:30
- 20:17:45
- 20:55 changed
- Perform TO2, net
- Breath test
- Not good: brown
III. At the end of the sampling
 1) Turn Pumps breaker off
 2) Ensure all flask valves closed

IV. Post-flight
 1) Remove traps
 2) Plug holes in dewar lid
 3) Download flask sampling data to laptop and pen drive
 4a) Turn off Mains breaker
 4b) Valve box breaker
 4c) 28V breaker
 5) Empty beads from upstream trap into ‘wet’ bead container to dry
 6) Open downstream trap and set upright
 7) ftp *.tab, and MED_*.Notes.txt files for this flight to the ao2raw directory on
catalog.eol.ucar.edu (or email if ftp does not work)
 8) email a scan of this checksheet to BBS (or fax if scanner not available)

V. Day after flight
 1) Transfer beads from downstream trap into upstream trap
 2) Unload flasks. Box #1: 10 Box #2: 11 5
MEDUSA leak check procedures

Flask Leak Check Procedure #1:

1. 28 V breaker on, Valve box on, Pump box on
2. Ensure Box #1 = 1, Box #2 = 1, 6-way = odd, Bypass on
3. Pup Ctrl Closed, Pdn Ctrl Open, Pump On - pull down bypass line for 1 minute
4. If necessary, “Clear All” (after being sure data from last flight is secure)
5. Adjust prepurge time to 20 seconds
6. Toggle between bypass on/off 6 times over 1-min to pull PSA down to < 200
8. Save PNGs of AEROS P,Flow/Stat to laptop (YYMMDD_RF##_Leakcheck1.png)
9. Close Pdn, turn pumps off (will leave in position 1)
10. Turn bypass on

Flask Leak Check Procedure #2:

1. “Clear All”
2. Valve box off, main breaker off then on to reset, then valve box back on
3. Ensure AEROS is running with MEDP1,MEDP2, MED_Psa, MEDPBYP recording
4. Open Pdn, turn pumps on and evacuate sample and bypass (toggle 6 times).
5. Close Pdn and turn pumps off
6. Adjust prepurge time to 20 seconds
7. Run 20-second prepurge to check all flask downstream tube PPs
9. Save PNGs of AEROS P/Flow/Stat to laptop (YYMMDD_RF##_Leakcheck2.png)
10. Turn bypass on

Bypass / System Leak Check Procedure:

1. Ensure bypass on, close PC1 and open PC2
2. Turn on pump breaker and let run for 1 minute
3. Verify Pup ~ 10, Pdown ~160, Pbypass ~160
4. Switch PC2 to closed and turn off pump
5. Wait 15 seconds and note Pu, Pd, Pb in table below
6. After 1 minute, record values again.
7. After 5 minutes, record values again
8. If Pdown and Pbypass <2 torr/5 mins, skip to 11
9. If values are not ok, turn PC1/PC2 to auto, run gas for 15 seconds, close PC2 for 1 second, and then shut off pump to pressurize system in bypass. Snoop trap fittings, and fittings between and to boxes, and fix/tighten as necessary
10. Return PC1 and PC2 to auto

<table>
<thead>
<tr>
<th>Time (UTC)</th>
<th>Pup</th>
<th>Pdn</th>
<th>Pbypass</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:36:00</td>
<td>9</td>
<td></td>
<td>172</td>
<td></td>
</tr>
<tr>
<td>14:41:00</td>
<td>14</td>
<td></td>
<td>173</td>
<td>177</td>
</tr>
</tbody>
</table>

I. Preflight

A. Day(s) before flight

- [] Prepare new traps w/ clean beads filled to 2" up from the bottom and bring to plane
- [] Install new traps
- [] Load flasks, confirm old and record new flask IDs, and inspect o-rings
- [] Record Flask Box Numbers: Box #1 101 Box #2 113
- [] Install flask box retaining pins
- [] Connect plumbing. Confirm lines are correctly installed with red label up
- [] Replace cover shields and (7b) complete rack book
- [] Record flask IDs into an Excel file on laptop (MED_YYMMDD_RF##.xls)
- [] If necessary, download data from previous flight to laptop and pen drive
- [] Check that flask table is clear. If not, “clear all”
- [] Complete flask leak check procedure #1
 - Start UTC 17:03
- [] Wait as long as possible, 1-hour preferred, then complete flask leak check procedure #2
 - Start UTC 18:48
- [] Pull bypass pressure down (PC2 open), then pumps off and PC2 closed
- [] Record Ps: Pup 17 Pdown 179 Pbypass 180 then all power off

<table>
<thead>
<tr>
<th>Flask ID Table (View from Front of Box)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 1345</td>
</tr>
<tr>
<td>14 1231</td>
</tr>
<tr>
<td>15 1034</td>
</tr>
<tr>
<td>16 1344</td>
</tr>
<tr>
<td>17 1052</td>
</tr>
<tr>
<td>18 1439</td>
</tr>
<tr>
<td>19 1166</td>
</tr>
<tr>
<td>20 1040</td>
</tr>
</tbody>
</table>
B. 2-hours before take-off: Dry ice and Sampler Set-up

1. Load dry ice into dewar 0.5” from lid
2. Ensure that MEDUSA valve control key is in place
3. 28 V breaker on, Valve box on, Main breaker on
4. Record P / Δ Pup 47.2/46.6 Pdown 48.7/30.4 Pbypass 48.1/30.3
5. Sync MEDUSA clock with clock on laptop +/- 1 sec
 MEDUSA time UTC 16:48:30 Laptop time UTC 16:48:30
6. Connect traps if not already
7. Ensure VLV1 = 1, VLV2 = 1, VLV3 = odd, bypass on, pumps off
8. Open all flask stopcocks 2 1/2 turns
 Flasks opened by: A3
9a) Re-install splinter shields
9b) Complete rack book
10. Confirm P upstream, P downstream, pre purge T, and min flush T settings
 - Puset 1/0 Pdownset 450 prepurgeT 45 flushT 120
11. Verify that no values are blinking on screen
12. Note trap temperature
13. Complete bypass / system leak check
14. Ensure both controllers are to auto
15. Turn pumps on
16. Verify pressures are controlling and flow is as expected
 - Pup 170 Pdown 44.9 Pbypass 73.2 Flow 4050
17. Adjust flight code to 1 (130/580/30) 125/620/45
18. If necessary, “Clear All” (after being sure data from last flight copied)
19. Pump breaker off (PB and VB stay on)
 - Step 1:
 - Step 2:

II. In flight
A. Immediately after take-off
 - Take-off time UTC 16:04:11
1. Turn pump breaker on
2. Verify pressures/flows agree with previous values from I.B.17.
 - Pup 125 Pdown 620 Pbypass 745 Flow 2600
3. Verify that Vstat2, CO2, and H2O are all reading correctly and no values
 blinking on screen. If sampling schedule allows, let CO2 and H2O stabilize
4. Start pre-purge
5. Note trap temperature
 - Trap T: 39.5
6. Record png of prepurge: (YYMMDD_r#_prepurge) File: n0700_r##_prepurge.png

B. Sample 45 secs after desired altitude at 3 SLPM (1:15 at 1.8 SLPM), and record values in chart below (nominal kft = 1, 5, 10, 15, 21, 28, 36, and 46)
 Whenever possible, favor flushing a flask as long as reasonable possible
 If pilots ascend to over 41 kft on initial, switch to flight plan 3 (90/690/300) for at least the top samples
 After first dive (40 kft to 1000 ft) is finished, adjust flight plan to 2 (180/400/120)
<table>
<thead>
<tr>
<th>Pos</th>
<th>Flow (V)</th>
<th>Psa (torr)</th>
<th>PC Setpts</th>
<th>End Time</th>
<th>PALTF</th>
<th>Profile #</th>
<th>Notes <Close></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.58</td>
<td>833</td>
<td>125/600</td>
<td>19:05:28</td>
<td>40</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4.68</td>
<td>828</td>
<td>125/600</td>
<td>19:13:23</td>
<td>33.5</td>
<td>1</td>
<td>19:13:45</td>
</tr>
<tr>
<td>3</td>
<td>4.66</td>
<td>824</td>
<td>125/600</td>
<td>19:15:34</td>
<td>2.8</td>
<td>1</td>
<td>19:19:00</td>
</tr>
<tr>
<td>4</td>
<td>4.59</td>
<td>815</td>
<td>125/600</td>
<td>19:23:46</td>
<td>19.7</td>
<td>1</td>
<td>19:24:15</td>
</tr>
<tr>
<td>5</td>
<td>4.59</td>
<td>815</td>
<td>125/600</td>
<td>19:28:57</td>
<td>13.5</td>
<td>1</td>
<td>19:29:35</td>
</tr>
<tr>
<td>6</td>
<td>4.59</td>
<td>812</td>
<td>125/600</td>
<td>19:33:27</td>
<td>8.0</td>
<td>1</td>
<td>19:34:05</td>
</tr>
<tr>
<td>7</td>
<td>4.59</td>
<td>807</td>
<td>125/600</td>
<td>19:36:57</td>
<td>4.2</td>
<td>1</td>
<td>19:37:35</td>
</tr>
<tr>
<td>8</td>
<td>4.59</td>
<td>810</td>
<td>125/600</td>
<td>19:43:51</td>
<td>0.5</td>
<td>1</td>
<td>19:45:30</td>
</tr>
<tr>
<td>9</td>
<td>5.33</td>
<td>907</td>
<td>120/450</td>
<td>19:47:35</td>
<td>0.5</td>
<td>2</td>
<td>19:48:00</td>
</tr>
<tr>
<td>10</td>
<td>5.33</td>
<td>908</td>
<td>120/450</td>
<td>19:51:12</td>
<td>2.7</td>
<td>2</td>
<td>19:51:45</td>
</tr>
<tr>
<td>11</td>
<td>5.33</td>
<td>908</td>
<td>120/450</td>
<td>19:55:01</td>
<td>5.5</td>
<td>2/3</td>
<td>19:55:30</td>
</tr>
<tr>
<td>12</td>
<td>5.33</td>
<td>907</td>
<td>120/450</td>
<td>19:56:12</td>
<td>1.8</td>
<td>3</td>
<td>19:58:55</td>
</tr>
<tr>
<td>13</td>
<td>5.32</td>
<td>907</td>
<td>120/450</td>
<td>20:04:36</td>
<td>0.5</td>
<td>3/4</td>
<td>20:05:10</td>
</tr>
<tr>
<td>14</td>
<td>5.33</td>
<td>906</td>
<td>120/450</td>
<td>20:09:23</td>
<td>2.9</td>
<td>3/4</td>
<td>20:10:15</td>
</tr>
<tr>
<td>15</td>
<td>5.32</td>
<td>922</td>
<td>120/450</td>
<td>20:15:37</td>
<td>5.5</td>
<td>4/5</td>
<td>20:16:10</td>
</tr>
<tr>
<td>16</td>
<td>5.32</td>
<td>908</td>
<td>120/450</td>
<td>20:18:46</td>
<td>1.9</td>
<td>5</td>
<td>20:19:15</td>
</tr>
</tbody>
</table>

√1) After sampling flask 16, close flasks 1-16
UTC: 20:19
Trap T: 40.0

2a) Turn Pump off
2b) Replace upstream trap
2c) Turn pump back on

<table>
<thead>
<tr>
<th>Pos</th>
<th>Flow (V)</th>
<th>Psa (torr)</th>
<th>PC Setpts</th>
<th>End Time</th>
<th>PALTF</th>
<th>Profile #</th>
<th>Notes <Close></th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>5.31</td>
<td>912</td>
<td>120/450</td>
<td>20:24:22</td>
<td>0.5</td>
<td>5/6</td>
<td>20:25:00</td>
</tr>
<tr>
<td>18</td>
<td>5.28</td>
<td>939</td>
<td>120/450</td>
<td>20:35:21</td>
<td>5.5</td>
<td>6</td>
<td>20:36:10</td>
</tr>
<tr>
<td>19</td>
<td>5.28</td>
<td>927</td>
<td>120/450</td>
<td>20:47:26</td>
<td>0.5</td>
<td>6/7</td>
<td>20:48:30</td>
</tr>
<tr>
<td>20</td>
<td>5.30</td>
<td>939</td>
<td>120/450</td>
<td>20:57:07</td>
<td>5.5</td>
<td>7</td>
<td>20:58:00</td>
</tr>
<tr>
<td>21</td>
<td>5.21</td>
<td>936</td>
<td>120/450</td>
<td>21:30:27</td>
<td>0.5</td>
<td>8</td>
<td>21:31:30</td>
</tr>
<tr>
<td>22</td>
<td>5.27</td>
<td>960</td>
<td>120/450</td>
<td>21:36:43</td>
<td>6.5</td>
<td>8</td>
<td>21:37:30</td>
</tr>
<tr>
<td>23</td>
<td>5.29</td>
<td>943</td>
<td>120/450</td>
<td>21:40:03</td>
<td>11.6</td>
<td>8</td>
<td>21:41:00</td>
</tr>
<tr>
<td>24</td>
<td>5.29</td>
<td>939</td>
<td>120/450</td>
<td>21:44:25</td>
<td>18.2</td>
<td>8</td>
<td>21:45:30</td>
</tr>
<tr>
<td>26</td>
<td>5.30</td>
<td>977</td>
<td>120/450</td>
<td>21:55:56</td>
<td>28.5</td>
<td>8</td>
<td>21:57:00</td>
</tr>
<tr>
<td>27</td>
<td>5.29</td>
<td>935</td>
<td>120/450</td>
<td>22:22:12</td>
<td>0.5</td>
<td>9</td>
<td>22:23:09</td>
</tr>
<tr>
<td>28</td>
<td>5.29</td>
<td>937</td>
<td>120/450</td>
<td>22:28:49</td>
<td>6.0</td>
<td>9</td>
<td>22:29:30</td>
</tr>
<tr>
<td>29</td>
<td>5.30</td>
<td>931</td>
<td>120/450</td>
<td>22:32:36</td>
<td>11.7</td>
<td>9</td>
<td>22:33:40</td>
</tr>
<tr>
<td>30</td>
<td>5.29</td>
<td>945</td>
<td>120/450</td>
<td>22:36:26</td>
<td>17.2</td>
<td>9</td>
<td>22:37:10</td>
</tr>
<tr>
<td>31</td>
<td>5.29</td>
<td>954</td>
<td>120/450</td>
<td>22:39:30</td>
<td>22.6</td>
<td>9</td>
<td>22:40:30</td>
</tr>
<tr>
<td>32</td>
<td>5.28</td>
<td>970</td>
<td>120/450</td>
<td>22:46:55</td>
<td>28.5</td>
<td>9</td>
<td>22:48:00</td>
</tr>
</tbody>
</table>

3) After sampling flask 32, close flasks 17-32
UTC: 22:48
Trap T: 39.8

<table>
<thead>
<tr>
<th>(start) PANC (Pencil is preferred)</th>
<th>Dips (Alt †, Time †)</th>
<th>(end) PANC</th>
</tr>
</thead>
</table>

(canvas-related information)
III. At the end of the sampling
 1) Turn Pumps breaker off
 2) Ensure all flask valves closed

IV. Post-flight
 1) Remove traps
 2) Plug holes in dewar lid
 3) Download flask sampling data to laptop and pen drive
 4a) Turn off Mains breaker (4b) Valve box breaker (4c) 28V breaker
 5) Empty beads from upstream trap into ‘wet’ bead container to dry
 6) Open downstream trap and set upright
 7) ftp *.tab, and MED_*_Notes.txt files for this flight to the ao2raw directory on catalog.eol.ucar.edu (or email if ftp does not work)
 8) email a scan of this checksheet to BBS (or fax if scanner not available)

V. Day after flight
 1) Transfer beads from downstream trap into upstream trap
 2) Unload flasks. Box #1: 117 Box #2 108
MEDUSA leak check procedures

Flask Leak Check Procedure #1:

1. 28 V breaker on, Valve box on, Pump box on
2. Ensure Box #1 = 1, Box #2 = 1, 6-way = odd, Bypass on
3. Pup Ctrl Closed, Pdn Ctrl Open, Pump On - pull down bypass line for 1 minute
4. If necessary, “Clear All” (after being sure data from last flight secure on laptop)
5. Adjust prepurge time to 20 seconds
6. Toggle between bypass on/off 6 times over 1-min to pull PSA down to < 200
8. Save PNGs of AEROS P/Flow/Stat to laptop (YYMMDD_RF##_Leakcheck1.png)
9. Close Pdn, turn pumps off (will leave in position 1)
10. Turn bypass on

Flask Leak Check Procedure #2:

1. “Clear All”
2. Valve box off, main breaker off then on to reset, then valve box back on
3. Ensure AEROS is running with MEDP1, MEDP2, MED_Psa, MEDPBYP recording
4. Open Pdn, turn pumps on and evacuate sample and bypass (toggle 6 times).
5. Close Pdn and turn pumps off
6. Adjust prepurge time to 20 seconds
7. Run 20-second prepurge to check all flask downstream tube Ps
8. Record times for AEROS matching. Start: 18:45:30 Finish: 19:00:15
9. Save PNGs of AEROS P/Flow/Stat to laptop (YYMMDD_RF##_Leakcheck2.png)
10. Turn bypass on

Bypass / System Leak Check Procedure:

1. Ensure bypass on, close PC1 and open PC2
2. Turn on pump breaker and let run for 1 minute
3. Verify Pup ~ 10, Pdown ~160, Pbypass ~160
4. Switch PC2 to closed and turn off pump
5. Wait 15 seconds and note Pu, Pd, Pb in table below
6. After 1 minute, record values again.
7. After 5 minutes, record values again
8. If Pdown and Pbypass <2 torr/5 mins, skip to 11
9. If values are not ok, turn PC1/PC2 to auto, run gas for 15 seconds, close PC2 for 1 second, and then shut off pump to pressurize system in bypass. Snoop trap fittings, and fittings between and to boxes, and fix/tighten as necessary
10. Return PC1 and PC2 to auto

<table>
<thead>
<tr>
<th>Time (UTC)</th>
<th>Pup</th>
<th>Pdn</th>
<th>Pbypass</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>17:05:30</td>
<td>170</td>
<td>173</td>
<td>173</td>
<td></td>
</tr>
<tr>
<td>17:06:30</td>
<td>9</td>
<td>170</td>
<td>173</td>
<td></td>
</tr>
<tr>
<td>17:11:30</td>
<td>17</td>
<td>171</td>
<td>171</td>
<td></td>
</tr>
</tbody>
</table>
Some notes on the ice:

- Melt pools seem to be forming into *melt rivers*

- Preferential cloud formation over open spots of water in the broken ice field.

- Very dirty/muddy bits of ice near coast. Ana says this is dirty ice that comes from the bottom of icebergs that touched coast/bottom.
NCAR/SCRIPPS MEDUSA Checklist

I. Preflight

A. Day(s) before flight

Date (YYMMDD) = 110711

1) Prepare new traps w/ clean beads filled to 2” up from the bottom and bring to plane
2) Install new traps
3) Load flasks, confirm old and record new flask IDs, and inspect o-rings
4) Record Flask Box Numbers: Box #1 117 Box #2 108
5) Install flask box retaining pins
6) Connect plumbing. Confirm lines are correctly installed with red label up
7a) Replace cover shields and 7b) complete rack book
8) Record flask IDs into an Excel file on laptop (MED_YYMMDD_RF##.xls)
9) If necessary, download data from previous flight to laptop and pen drive
10) Check that flask table is clear. If not, “clear all”
11) Complete flask leak check procedure #1
12) Wait as long as possible, 1-hour preferred, then complete flask leak check procedure #2

Start UTC 08:14
Start UTC 16:30

B. Prior to takeoff

13) Pull bypass pressure down (PC2 open), then pumps off and PC2 closed
14) Record Ps: Pup 1095 Pdown 1039 Pbypass 1239 then all power off

<table>
<thead>
<tr>
<th>Flask ID Table (View from Front of Box)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>17</td>
</tr>
<tr>
<td>18</td>
</tr>
<tr>
<td>19</td>
</tr>
<tr>
<td>20</td>
</tr>
</tbody>
</table>
B. 2-hours before take-off: Dry ice and Sampler Set-up

- 1) Load dry ice into dewar 0.5” from lid UTC 16:10
- 2) Ensure that MEDUSA valve control key is in place
- 3) 28 V breaker on, Valve box on, Main breaker on
- 4) Record P / Δ: Pup 16.9 / +461 Pdown 51.2 / +323 Pbypass 50.4 / +328 UTC 16:15
- 5) Sync MEDUSA clock with clock on laptop +/- 1 sec

 MEDUSA time UTC 16:29:25 Laptop time UTC 16:29:27

- 6) Connect traps if not already
- 7) Ensure VLV1 = 1, VLV2 = 1, VLV3 = odd, bypass on, pumps off
- 8) Open all flask stopcocks 2 half turns Flasks opened by: WB
- 9a) Re-install splinter shields 9b) Complete rack book
- 10) Confirm P upstream, P downstream, pre purge T, and min flush T settings

 Pup <0.5 Pdown <0.5 Pbypass <1.5 Flow <15 L/min

- 11) Verify that no values are blinking on screen
- 12) Note trap temperature Trap T: 40.0
- 13) Complete bypass / system leak check
- 14) Ensure both controllers are to auto
- 15) Turn pumps on
- 16) Verify pressures are controlling and flow is as expected

 Pup <0.5 Pdown <0.5 Pbypass <1.5 Flow <15 L/min

- 17) Adjust flight code to 1 (130/580/30)
- 18) If necessary, “Clear All” (after being sure data from last flight copied)
- 19) Pump breaker off (PB and VB stay on)

II. In flight

A. Immediately after take-off

- 1) Turn pump breaker on

 UTC 15:24:27

- 2) Verify pressures/flows agree with previous values from I.B.17.

 Pup <0.5 Pdown <0.5 Pbypass <1.5 Flow <15 L/min

- 3) Verify that Vstat2, CO2, and H2O are all reading correctly and no values
 blinking on screen. If sampling schedule allows, let CO2 and H2O stabilize

- 4) Start pre-purge

 UTC 15:26:32

- 5) Note trap temperature

 Trap T: 38.7

- 6) Record png of pre-purge: (YYMMDD_rf##_prepurge) File: 01011T1R2.83C3p00.png

B. Sample 45 secs after desired altitude at 3 SLPM (1.15 at 1.8 SLPM), and record values in chart below (nominal kft = 1, 5, 10, 15, 21, 28, 36, and 46)

 Whenever possible, favor flushing a flask as long as reasonable possible
 If pilots ascend to over 41 kft on initial, switch to flight plan 3 (90/690/300) for at least the top samples

 After first dive (40 kft to 1000 ft) is finished, adjust flight plan to 2 (180/400/120)
<table>
<thead>
<tr>
<th>Pos</th>
<th>Flow (V)</th>
<th>Psa (torr)</th>
<th>PC Setpts</th>
<th>End Time</th>
<th>PALTF</th>
<th>Profile #</th>
<th>Notes</th>
<th>Closed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.74</td>
<td>834</td>
<td>125/620</td>
<td>19:17:54</td>
<td>40</td>
<td>1</td>
<td>1</td>
<td>19:19:00</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4.67</td>
<td>825</td>
<td>125/620</td>
<td>19:23:14</td>
<td>82.1</td>
<td>1</td>
<td>1</td>
<td>19:23:50</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4.75</td>
<td>818</td>
<td>125/620</td>
<td>19:27:49</td>
<td>25.7</td>
<td>1</td>
<td>1</td>
<td>19:28:05</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4.60</td>
<td>813</td>
<td>125/620</td>
<td>19:32:29</td>
<td>19.3</td>
<td>1</td>
<td>1</td>
<td>19:33:00</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4.61</td>
<td>816</td>
<td>125/620</td>
<td>19:35:51</td>
<td>14.4</td>
<td>1</td>
<td>1</td>
<td>19:40:30</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4.60</td>
<td>815</td>
<td>125/620</td>
<td>19:43:53</td>
<td>8.3</td>
<td>1</td>
<td>1</td>
<td>19:44:20</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4.61</td>
<td>813</td>
<td>125/620</td>
<td>19:48:53</td>
<td>6.8</td>
<td>1</td>
<td>1</td>
<td>19:49:25</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4.61</td>
<td>813</td>
<td>125/620</td>
<td>19:49:36</td>
<td>0.6</td>
<td>1/2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>4.63</td>
<td>818</td>
<td>125/620</td>
<td>20:04:54</td>
<td>9.4</td>
<td>2</td>
<td>2</td>
<td>20:05:50</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>4.64</td>
<td>818</td>
<td>125/620</td>
<td>20:10:45</td>
<td>22.2</td>
<td>2</td>
<td>2</td>
<td>20:11:20</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>4.63</td>
<td>820</td>
<td>125/620</td>
<td>20:20:05</td>
<td>2.8</td>
<td>2</td>
<td>2</td>
<td>20:21:00</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>4.65</td>
<td>820</td>
<td>125/620</td>
<td>20:33:36</td>
<td>2.8</td>
<td>3</td>
<td>3</td>
<td>20:34:10</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>4.63</td>
<td>819</td>
<td>125/620</td>
<td>20:41:34</td>
<td>10.6</td>
<td>3</td>
<td>3</td>
<td>20:42:20</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>4.63</td>
<td>817</td>
<td>125/620</td>
<td>20:45:42</td>
<td>0.6</td>
<td>3</td>
<td>3</td>
<td>20:46:10</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>4.62</td>
<td>821</td>
<td>125/620</td>
<td>20:51:07</td>
<td>4.9</td>
<td>3</td>
<td>3</td>
<td>20:51:50</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>4.62</td>
<td>817</td>
<td>125/620</td>
<td>20:55:53</td>
<td>0.5</td>
<td>3</td>
<td>3</td>
<td>20:56:50</td>
<td></td>
</tr>
</tbody>
</table>

√1) After sampling flask 16, close flasks 1-16
UTC: 20:56
Trap T: 40

路由器

2a) Turn Pump off
2b) Replace upstream trap
2c) Turn pump back on

Pos | Flow (V) | Psa (torr) | P Setpts | End Time | PALTF | Profile # | Notes | Closed | Notes |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>3.94</td>
<td>786</td>
<td>90/710</td>
<td>21:55:48</td>
<td>43</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>3.93</td>
<td>800</td>
<td>90/710</td>
<td>22:19:29</td>
<td>43</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>3.93</td>
<td>800</td>
<td>90/710</td>
<td>22:56:42</td>
<td>43</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>3.92</td>
<td>797</td>
<td>90/710</td>
<td>23:04:59</td>
<td>31.5</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>3.91</td>
<td>809</td>
<td>90/710</td>
<td>23:10:55</td>
<td>26</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>5.30</td>
<td>972</td>
<td>190/450</td>
<td>23:18:22</td>
<td>15.0</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>5.30</td>
<td>950</td>
<td>190/450</td>
<td>23:26:40</td>
<td>10.1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>5.30</td>
<td>939</td>
<td>190/450</td>
<td>23:33:15</td>
<td>4.8</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>5.30</td>
<td>905</td>
<td>190/450</td>
<td>23:40:28</td>
<td>45</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>5.30</td>
<td>805</td>
<td>190/450</td>
<td>23:47:28</td>
<td>45</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>5.30</td>
<td>806</td>
<td>190/450</td>
<td>23:53:28</td>
<td>31</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>5.30</td>
<td>948</td>
<td>190/450</td>
<td>23:59:11</td>
<td>20</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>5.31</td>
<td>936</td>
<td>190/450</td>
<td>23:59:11</td>
<td>13.9</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>5.30</td>
<td>950</td>
<td>190/450</td>
<td>00:01:13</td>
<td>8.8</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>5.29</td>
<td>955</td>
<td>190/450</td>
<td>00:06:04</td>
<td>6.9</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>5.28</td>
<td>950</td>
<td>190/450</td>
<td>00:14:18</td>
<td>6.9</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

√3) After sampling flask 32, close flasks 17-32
UTC: 00:00
Trap T: 40
III. At the end of the sampling
 1) Turn Pumps breaker off
 2) Ensure all flask valves closed
 UTC: 4:49

IV. Post-flight
 1) Remove traps
 2) Plug holes in dewar lid
 3) Download flask sampling data to laptop and pen drive
 4a) Turn off Mains breaker 4b) Valve box breaker 4c) 28V breaker
 5) Empty beads from upstream trap into ‘wet’ bead container to dry
 6) Open downstream trap and set upright
 7) ftp *_tab, and MED_*_Notes.txt files for this flight to the ao2raw directory on catalog.eol.ucar.edu (or email if ftp does not work)
 8) email a scan of this checklist to BBS (or fax if scanner not available)

V. Day after flight
 1) Transfer beads from downstream trap into upstream trap
 2) Unload flasks. Box #1: _______ Box #2: _______
MEDUSA leak check procedures

Flask Leak Check Procedure #1:

1. 28 V breaker on, Valve box on, Pump box on
2. Ensure Box #1 = 1, Box #2 = 1, 6-way = odd, Bypass on
3. Pup Ctrl Closed, Pdn Ctrl Open, Pump On - pull down bypass line for 1 minute
4. If necessary, “Clear All” (after being sure data from last flight secure on laptop)
5. Adjust prepurge time to 20 seconds
6. Toggle between bypass on/off 6 times over 1-min to pull PSA down to < 200
8. Save PNGs of AEROS P,Flow/Stat to laptop (YYMMDD_RF##_Leakcheck1.png)
9. Close Pdn, turn pumps off (will leave in position 1)
10. Turn bypass on

Flask Leak Check Procedure #2:

1. “Clear All”
2. Valve box off, main breaker off then on to reset, then valve box back on
3. Ensure AEROS is running with MEDP1,MEDP2, MED_Psa, MEDPBYP recording
4. Open Pdn, turn pumps on and evacuate sample and bypass (toggle 6 times).
5. Close Pdn and turn pumps off
6. Adjust prepurge time to 20 seconds
7. Run 20-second prepurge to check all flask downstream tube Ps
8. Record times for AEROS matching. Start: 16:30:06 Finish: 16:45
9. Save PNGs of AEROS P,Flow/Stat to laptop (YYMMDD_RF##_Leakcheck2.png)
10. Turn bypass on

Bypass / System Leak Check Procedure:

1. Ensure bypass on, close PC1 and open PC2
2. Turn on pump breaker and let run for 1 minute
3. Verify Pup ~ 10, Pdown ~160, Pbypass ~160
4. Switch PC2 to closed and turn off pump
5. Wait 15 seconds and note Pu, Pd, Pb in table below.
6. After 1 minute, record values again.
7. After 5 minutes, record values again
8. If Pdown and Pbypass <2 torr/5 mins, skip to 11
9. If values are not ok, turn PC1/PC2 to auto, run gas for 15 seconds, close PC2 for 1 second, and
 then shut off pump to pressurize system in bypass. Snoop trap fittings, and fittings between and
to boxes, and fix/tighten as necessary
10. Return PC1 and PC2 to auto

<table>
<thead>
<tr>
<th>Time (UTC)</th>
<th>Pup</th>
<th>Pdn</th>
<th>Pbypass</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>17:00:20</td>
<td>6</td>
<td>169</td>
<td>171</td>
<td></td>
</tr>
<tr>
<td>17:01:20</td>
<td>6</td>
<td>169</td>
<td>171</td>
<td></td>
</tr>
<tr>
<td>17:05:20</td>
<td>9</td>
<td>170</td>
<td>172</td>
<td></td>
</tr>
</tbody>
</table>