
OM
EVE Tech Notes:

Sections Include: On Page:

1.) “How to Build EVE EPROMs:” . 1
2.) “EVE VxWorks Info.” . 2
3.) “EVE Code Overview:” . 7
3.) “VME / DCOM332 Addresses and Interrupt Vectors:” 13
4.) “VME BUS / Development Notes:” . 15
5.) “VME Bus Errors:” . 15
6.) “VME Static RAM: bootup errors, 991123” 17
7.) “SIZEOF storage allocation:” . 18
8.) “COVAR Accuracy, Negative Covars and Usage of COVARDP:” 19
9.) “Scale and Bias of Calibrations:” . 20
10.) “Signed and Unsigned quantities:” . 20
11.) “Status Parameters:” . 21
12.) “Logic Families:” . 22

1. How to Build EVE EPROMs:

1) From $PAM/pam3/elf: make pam3.st.o

2) From $PAM/pam3/vx/config/dcom332 make CPU=MC68010 TOOL=gnu eve.hex

(NOTE: Check config.h file to make sure it is setup for EVE code and not for
vxWorks. See info on config.h.)

3) Copy "eve.hex" to PC which has the pilot prom programmer on it (/ap/advin is PR
directory). Make sure ftp is in ASCII mode.

4) On PC, open DOS window:

 cd c:\ap\advin

 advin

5) Select "spEPROM" and hit return.

6) /C(onfig) W(idth) M(otorola Way)

7) /F N(ame) "eve.hex"

8) /F F(ormat) S(-record)

9) /F L(oad)

10) /P P(rogram)

2. EVE VxWorks Info.

Currently using 5.1.1

Could upgrade to 5.2 (see vx/config/dcom332/READ.ME for Dynatem ethernet card
info).

IMPORTANT: Before trying to compile stuff for vxWorks, do:
 "source $PAM/pam3/bin/vx51_env"
 This sets up: "alias vxmake make CPU=MC68010 TOOL=gnu"
 Which may need to be changed for different CPU’s

config.h $PAM/pam3/vx/config/dcom332
 Must be modified between EVE make and vxWorks chips. Search
 for the "/* PAM debugging stuff " string near the end of the
 file. For vxWorks use "#if 1" and for EVE use "#if 0". This
 could probably be stuffed into the make file with a compiler
 define, but it has always been easier to do it by hand,
 because there are so many dependencies on "config.h".

 NOTE: BOOT_LINE definition for Vx startup over the
 network, including the address of the host to get it
 from, the devel system addresss, user, and startup
 script locations. Example:
 #define DEFAULT_BOOT_LINE \
 "es(0,0)toucan:/net/pam/pam3/vx/config/dcom332/vxWorks e=128.117.80.6
 h=128.117.80.71 g=128.117.80.251 f=08 tn=elf
 s=/net/pam/pam3/elf/startup.dcom u=militzer$

../all/usrConfig.c #ifdef PAM_ROM - has hook to start eve code on boot

MakeSkel file is used to generate the Makefiles. When upgrading to vx5.2,
this will be used to create the new vx5.2 "Makefile.MC68010gnu".

Makefile.MC68010gnu. This has been modified after its initial creation to
 have all the EVE code dumped in. See the eve.hex target
 and such in this file.
Various make targets.

Note: Vx Normally is compressed in ROM and on bootup uncompresses
 its kernel copying itself and executes out
 of RAM. Depending upon the make, can either be a
 networked download or standalone version with or without

 the shell.
 ROM Resident Versions: Vx executes from the ROM.
 This leaves more RAM for user development code
 applications.
 Runs a little slower due to slower ICs.
 Generally requires a larger EPROM (512).
 Resident versions for either stand-alone or networked
 operation can be built

 IC speed: EPROM 27C4096 = 120nS (larger 512kb ROM for resident versions)

vxmake Creates a vxWorks.hex file for burning into EPROM.
 This is the normal development EPROM. It runs out of
 RAM and download the symbol tables, etc. from the network

vxmake vxWorks.res_rom.hex -- Standalone, ROM resident version of
 vxWorks which includes the shell. Executes from the
 EPROM rather than uncompressing into RAM.
 It boots much faster and leaves a lot more room
 in RAM for development code. In order to make this, the EPROM
 size must be set to 0x8,0000 in both "config.h" and
 "Makefile.MC68010gnu". Normally this is at 0x4,0000 for the
 standard 27C2048 EPROMs.

vxmake eve.hex -- Standalone, EVE Version for burning into EPROM and PAM
 station. Does not include the Vx shell, networking,
 debugging, spy/monitoring, etc.
 This version uncompresses and runs from RAM.

vxmake eve.res_rom.hex -- Standalone, ROM resident, EVE version.
 Executes out of ROM and does not include the
 shell. It loads faster, but requires the
 27C4096 EPROMs.
 There may be some performance issues which need to be
 monitored due to the slower ROMs.

EPROM sizes: Are changed in Makefile.MC68010gu and config.h.
 Can move from current size 27C2048 to a 27C4096.

Math Library

The vxWorks math library has been modified for the DCOM332 board.
The reason is as follows: The 68332 processor uses 99% of the 68020

instructions. However, vxWorks is told the processor is a 68010. The
68020 math library can do a 32 bit divide instruction, but the 68010 math
library must use 16 bit divides. Thus the change.

Math libraries: Pulled out of 68020 and put into 68010 library.
"gccMathALib.o" Library is "libMC68010gnuvx.a".

BUGS in vxWorks 5.1. Math
 The single precision math library is partially crap.
 Some effort was made a couple years ago to have Wind River deal
 with this, but they claimed the math library was purchased from
 a 3rd party, and they couldn’t fix it. Work arounds have been
 used in the EVE code.
 Mostly, double precision routines have been used instead of bad
 single precision ones.

Vx Board Support Package:

 System Library: vx/config/board/sysLib.c
 Initialization functions
 Memory / Address space functions
 Bus Interrupt functions
 Clock / Timer functions
 Mailbox / location monitor functions

 Not all of these are used with any specific board.
 Some boards won’t have the capabilities, others may have
 jumpers instead.j

 The user does not typically call these, they’re done through the
 config modules usrConfig.c and bootConfig.c
 And set up with the config files:

 tty Driver
 tyCoDrv.c provides console driver
 User does not call.
 Interfaced through usrConfig.c and bootConfig.c

Configuring VxWorks
 vx/config/all/usrConfig.c Compilation of this includes these
 definition header files:...

 vx/config/all/configAll.h Selects Vx options and features (global)

 vx/config/-board-/config.h Selects Vx options and features (target-specific)
 This file can redefine modules included/excluded from
 the global config file which are inappropriate for the board.
 default boot parameter string for ROMs: ie
 user/target-id/host-id to load from

Board Dependent Libraries

 ==IN VXWORKS DIR==

 Serial Card Drivers
 z8530Serial.c (not currently used--requires same IRQ as rtc)
 m68681Serial.c
 m68332Serial.c
 tpuSerial.c
 vser80drv.c

 Real-Time Clock Library

 DCOM332 also has tpuPulseCntLib.h

 ==IN ELF DIR==

 syncLib.h -- Provides task real time task scheduling based on
 IRQ from real time clock. DCOM332 base at 1 sec.

Other Libraries

pcmcia -- Driver for DMEM20 PCMCIA. This driver can be compiled with or
 without interrupts for read/write. Just change "#undef USE_INTR" to
 "#define USE_INTR". Has been tested with 5MB and 10MB cards, but
 will also need to work with 40MB cards for GAME. Hopefully there
 shouldn’t be any problems. If there are, the most likely source is
 compatibility between a vxWorks format and an MS-DOS version. There
 is a distribution version of this code under pcmcia/dist which
 contains a README file.

xmodem -- Xmodem. This has been pretty stable. One minor change made in last
 couple years to fix Ymodem protocol conflict with Procomm Plus.

fft -- FFT for bandpass Covar. Stable.

dirlib -- Wildcard handling routines. Stable.

==
3. EVE Code Overview:
==
These are somewhat old notes left by Matt...

Directory Descriptions (under /net/pam/src/elf)

goes Stand alone code for running the SE110 transmitter from
 workstation.
sio-msgs Definitions for fake serial sensor messages to use for
 testing.

File Descriptions (under /net/pam/src/elf)

Makefile Current Makefile for DCOM332 based EVE
 These next are now in a subdirectory /Makefile.saves
Makefile.dcom332 Older version of Makefile for DCOM332
Makefile.pvsbc2 Older version of Makefile for PEP PVSBC2 based EVE,
 Note this is a MC68000 so it may not handle the
 extra processing of the current EVE software.

IMP232Params.h Communication parameters for TRIME IMP2323 bus
adaptFcast.h Despiker data structure
data_struct.h Main set of data structure files for EVE
dirLib.h Include file for dirLib wildcard handling
feve_global.h Assorted global defines
floatNum.h Definition for bad Float value--this has been superceded
fstatus.h Status parameter types and structures
goesUtilRtns.h Odds and ends of global routines. Originally John M.’s
pollParams.h Polled sensor timing definitions
sBusParams.h Sensor bus standards
standard_defs.h John’s standard stuff used for GOES transmitter code
sync.h Task synchronizer structure def
syncLib.h Task synchronizer routines
tgtXmtrCodes.h Definitions for TGT GOES transmitter (not currently used)
transmitter_defs.h Definitions for SE100 GOES transmitter
hashFunc.h Hash library routines

tgtXmtrCode.c Telonics GOES transmitter code (not currently used)
tgtControl.c Routines for TGT transmitter (not currently used).
xmtrCode.c Communication routines for SE100
goesSio.c Read/Write routines to SE100.
goesControl.c Auxiliary control routines for SE100 transmitter.
goespack.c Generates PPF type data packet
goesUtilRtns.c Library of assorted routines. Originally John M.’s routines
goesXmit.c Task to send data to GOES transmitter (#ifdef for TGT)
goesXmitProcess.c Parses a "GOES:" command. Originally part of feve.c.
sync.c Real-time clock task synchronizer.
sioTalk.c Serial port talk routine.
sBusTalk.c Sensor bus talk routine.
cfft.c FFT routines
tickClockSyncer.c Synces vxWorks tick() with real-time clock.
argCnt.c Counts scanf, printf arguments.
imkoTalk.c TRIME, IMP232 bus talk routine.
pollTalk.c Polled sensor talk routine.
feve.c Main routine. Configuration loader/unloader.
fixFormat.c Converts \n, , etc. to the appropriate character
stats.c EVE statistics routines (ie DO commands).
async_in.c "SERIAL:" sensor task code.
msg_maker.c Creates and sends field terminal messages.
ftertas.c Processes requests for field terminal messages.
fhantas.c Old code for Handar GOES transmitter. Not used.
fstatus.c Status parameter handling.
readData.c Reads EVE data, with optional reset code for final output.
getString.c Configuration file string reader.
bbram.c Initializes the MS-DOS file system on battery backed RAM.
sysTerm.c System terminal interface commands.
idle.s Idle task -- executes a stop instruction to save power
dataSync.c data time synchronizer code.
packTask.c Handles "OUTPUT:" command to munch data at specific times.
fileSave.c FILE: command handling. Saves data to disk or other device.
analog_in.c Analog input sensor code.
adBoard.c O+R VADC21 A/D input.
binSioIn.c "BINSERIAL:" routine for binary serial data.
sBusIn.c "SBUS:" routine for sensor bus input.
pulseIn.c "PULSE:" routine to read pulse counts.
func.c Set of math routines for "CREATE:" command.
bpCovar.c Bandpass Covariance routine.
imp232In.c TRIME sensor input.
adaptForecast.c Despiker routine.
auxConsole.c Allows establishing an auxiliary console port.
pcCard.c Initialization for PCMCIA card.
pollSio.c "POLL:" sensor input.

outputProcess.c Parses "OUTPUT:" command. Originally part of feve.c.

trimMean.c Trimmed mean calculation for bpCovar.c
hashFunc.c Hash table routine.

EVE Development Boot Up / Environment

BOOT PROCEDURE: for checking out new code on the development system ’Elf’.
 The vxWorks bootline is normally set to load and execute the startup file
 "$PAM/pam3/elf/startup.dcom". This in turn does a
 "cd /net/pam/src/elf", and some of the serial drivers are started.

To talk to the development system "elf", either do an "rlogin elf" or talk
over the serial console port either with Pcplus on a PC or Kermit on the Sun.

To load and EVE type at the command prompt:
 "<leve"

The development version of EVE is broken down into three object files
which must load in the order given. The problem with combining
everything into a single file, is that if debugging info is created (by
compiling with -g (or make ___.g)), then there may not be enough RAM to
load the whole mess. (This may be somewhat improved with
vxWorks.res_rom.hex.)

Debugger is awkward to use with Vx5.1. Requires "make" twice to use it.
After EVE successfully loads type:
 "sp eve"
This should start things rolling. If using the console port and not an
rlogin, it will be necessary to type "taskSuspend 0" after EVE starts.
This causes the vxWorks shell to suspend itself so that the "EVE>"
prompt can be accessed. A "^C" will revive the shell.

Vx Boot Up Description:

 1) get Vx into main memory (boot ROM)
 2) sysInit() Vx startup entry point. (See RAM_LOW_ADRS)
 found in sysALib.s, locks interrupts, sets stack
 ptr, jumps to usrInit...
 [usrConfig.c of Vx has 3 routines including]
 3) usrInit() First routine to run under vx. Initializes

 basic environment: cache, zeroes mem (bss
 segment), initializes interrupt and exception
 vectors (base addr) initialize/start
 multi-tasking kernel (TCBs, stack, lock level).
 Note: calls kernelInit() which initializes the
 all important memory pool for dynamic allocation
 of practically everything.
 4) usrRoot() first task to run under multi-tasking
 environment. For most of these, see the config
 setup and the INCLUDES there in configAll.h
 a) usrClock() Initializes system clock and connects to
 interrupt.
 Note: the system clock rate per Vx can be set to
 50,60 or 100 ticks/sec. With PAM/DCOM332 it’s 60.
 b) i/o system no. of drivers, files.
 c) create console, stdin/out/err
 d) exception handling, signals, debugging and logging
 e) standard i/o
 f) file system device creation (dos file system for PAM)
 g) floating point
 h) performance monitoring / spyLib and subroutine exec timers
 timexLib
 i) network initialization (not in PAM_ROM), via INCLUDE_NET_INIT
 and uses the config statement, generally the
 ’boot line’ noted above with config.h
 Some of the network facilities loaded are also
 included in the configAll.h file
 j) Optional stuff:
 k) symbol table is created and loaded: ie names/addresses of
 functions and variables. For standalone systems
 (ie PAM_ROM) it is not loaded over the net but
 included with the rom.
 For devel. systems this includes the symbols of
 Vx accessible via the shell (vxWorks.sym)
 l) executes the startup script
 via INCLUDE_STARTUP_SCRIPT in configAll.h and
 the boot line in config.h For PAM this is
 $PAM/pam3/elf/startup.dcom
 m) spawns the shell for development environment (ie not PAM_ROM)
 or else calls ’eve_main’ (for PAM_ROM)
 which gets the user code going....

 5) eve_main() The main EVE entry point, which does some
 additional system checkout.
 a) Initialize and verify real-time clock time.
 b) Load the serial drivers on the DCOM332 board

 c) Load the vser80 serial driver if board is present
 e) Check if the A/D board is present
 f) Initialize the battery backed RAM disk.
 g) Check if PCMCIA board is present and initialize that.

Then a PROM time/date is printed and the configuration load is started.

The configuration loader uses a getString() routine to grab lines of text.
The getString routine handles comments and "<file.dat" sub files. The
first word of a line is compared to a list of EVE commands. If a match is
found, the routine which handles parsing and programming for that command is
executed.

How-to For EVE Modifications

Adding new statistics routine (EVE "DO:")

A statistics routine has a single output variable, but may have more than one
input parameters. Each statistics function requires three routines: an in, an
out, and an init. The in routine is accessed to add new data. The out
routine is called to output the value, and the init is called to re-initialize
all the variables. All statistics are in the "stats.c" file.

Look at "avgIn", "avgOut", and "avgInit" for a good example. After the
routine has been written, add everything to the structure at the end of the
file. Recompile, and presto.

Adding a new calculation (EVE "CREATE:")

A calculation can have one or more input variables, one or more output
variables, and one or more constants. These routines are also easy to add.
Simple functions should be added directly to "func.c". See any of the
existing routines for examples on how things work. The new routine must be
added to the structure at the end of the file for the whole thing to work.

There are two complex "CREATE:" commands, the despiker and the bandpass
covariance. These routines are in separate files, but they are referenced in
the structure too.

A (*startFunct)(void *[]) is called for complex data initialization
requirements, and then on an "EVE stop" command the (*killRoutine)(void *[])
is called for cleanup. The simple functions don’t use this.

Changing Bandpass Covar

One anticipated change to the bandpass routine is to input air temperature for
calculation of the time constant rather than relying on the sonic
temperature. This will require modifying the funcTable[] structure at the
end of the "func.c" file to add the new parameter. Also, the pointers in
bpCovar.c must be shuffled a bit to squeeze in the new parameter. Then use
the air temperature instead of the sonic temperature in the routine.

A second change is massaging the data a bit more when Tom tweaks the
algorithm. Currently, the code has an "#if" around the section to find the
time constant using the spectral information. This bit has not been tested,
and probably should be disabled until it has been verified.

Adding new sensor.

This is a bit of work. The best thing to do is examine the "async_in.c" code
for the "SERIAL:" command. Here is a list of things needed.

 1) New data structure for sensor specicific information.
 This structure should be combined with the generic sensor structure
 "SENSOR".

 2) New sensor routine. Copy, modify async_in.c for ease.

 3) New command parsing routine. This has been placed in "feve.c"
 historically, but a paradigm might be to put this in the new sensor
 routine file. The jobs of the sensor parsing routine is to first
 read all the command information and make sure there are no
 mistakes. Then a new sensor structure is created, and the
 requesite information is placed there.

 4) The sensor structures are linked lists. There is a general sensor
 head, and a specific head for each type of sensor. A new head will
 be needed for the new sensor.

 5) The code to spawn the sensor task is located in a different section
 of the feve.c file. New code to spawn the new sensor will be
 needed.

 6) Each sensor has a single character type assigned to it. These are

 kept in data_struct.c. Some argument can be made to change the
 whole mess to an enum() statement, but this would be more work.
 Anyway the new sensor will require a new character type to identify
 it.

 7) Several places in the feve.c file are marked with "^^^" in
 comments. These are places where the data from the sensor
 structure is needed for one reason or another. If the sensor is
 not too unorthodox, it should be possible to add the new type in
 fairly easily.

 8) In addition to the sensor creation code, additional code is needed
 to free the memory required by the sensor. This is normally placed
 after the command parsing/creation code.

 9) Code to do a taskDelete() on the sensor and hand off the structure
 deletion is also required. This is more to the front of feve.c

r).

er

d

re, a
ressed
n.

g a
4. VME / DCOM332 Addresses and Interrupt Vectors:

---------------------- Update this from the text file !!! -----------------------

Addresses

Jumper W2 For DCOM332 setting address of 2MB dual ported SRAM.

0x800,000 -- 0xFFF,FFF VME Standard Address Range. This is mapped
from VME A24 space 0x000,000 -- 0x7FF,FFF.
ie the DCOM sees it as 0x800,000 - 0x9FF,FFF
for the 2MB (check)

0x7FF,E00 -- 0x7FF,FFF 68332 TPU, (used for serial, pulse inputs and system time
0x7FF,C00 -- 0x7FF,DFF 68332 Queued Serial Module
0x7FF,B00 -- 0x7FF,B3F 68332 Standby SRAM Control
0x7FF,A00 -- 0x7FF,A7F 68332 System Integration Module
0x7FF,000 -- 0x7FF,7FF 68332 2K Internal SRAM -- Used in EVE for TPU serial driv

microcode.
0x700,000 -- 0x77F,FFF EPROM space (Max of 512K or 27C4096 EPROM) Move

from Normal 000,000 on reset by changing CSBARBT to
0x7006

0x600,000 -- 0x60F,FFF VMEbus Short I/O (A16) Space, ie address modifiers set
accordingly and 16-bit address are set on the bus.

0x260,000 -- 0x260,0FF VLX Bus Interface (Not currently used.
0x240,000 -- 0x240,00F 68692 DUART
0x200,000 -- 0x200,00F MSM6242 Real-Time Clock Registers
0x000,000 -- 0x1FF,FFF 2 MB SRAM. Battery backed.

SRAM Address Space (2mB)

0x000,000 -- 0x17F,EFF SRAM local address
0x17F,F00 -- 0x1FF,EFF Battery Backed RAM disk 512K (0x80000 bytes in 1024

blocks of 512 each, using 1 logical track).
See file bbram.c for init routine and the 'ramDevCreate' call
which does this. 1024, 512 byte blocks in 1 logical track.

0x1FF,F00 -- 0x1FF,FFF vxWorks non-volatile RAM boot-line

VMEbus Address Space

Note: DMEM20 is normally programmed to read the bottom half of VMEbus address space. Therefo
board at 0x100,000 would be seen at 0x900,000 by the DCOM332. A board at 0x900,000 can't be add
without toggling the VME A24 line on the DCOM332. See the DCOM332 manual for more informatio

0x200,000 DMEM20 PCMCIA A24 space. This space is addressed by openin
memory window to a PCMCIA card.

VMEbus I/O Space (Short A16 space)

Note: A board at short address space 0x1000, is seen at 0x601,000 by the
DCOM332.
0xC000 PROPOSED VME RESET LOCATION

C000 = reset
C001 = clear watchdog
C002 = toggle power circuit 1
C003 = toggle power circuit 2

0x8000 Dynatem DLAN Adapter
0x4000-0x5FFF DMEM20 Card Base (I/O space), includes:
0x4240 DMEM20 TCIC chip Base
0x2600 O+R VSER80 8 Channel Serial Card
0x1A00 O+R VADC21 A/D Board
0x000000 EEPROM,

1st 4 bytes = Stack Pointer
2nd 4 bytes = Reset Vector

Interrupt Vectors

Vector Level Device

0x18 Spurious Interrupt
== IRQ 0x19 to 0x1F are autovectors 1--7 ==
0x19 1 N/A
0x1A 2 Mailbox
0x1B 3 N/A
0x1C 4 68692 DUART
0x1D 5 RTC, VLXbus (RTC is used by EVE, so VLX won't work)
0x1E 6 N/A
0x1F 7 Abort

0x40 5 68332 Serial
0x41 68332 SPI (reserved, but not currently used)
0x42 6 Clock tick (used for vxWorks auxClock and EVE A/D)

0x50 5 TPU chan 0 (EVE /tyCo/3 RX)
0x51 5 TPU chan 1 (EVE /tyCo/4 RX)
0x52 5 TPU chan 2 (EVE /tyCo/5 RX)
0x53 5 TPU chan 3 (EVE /tyCo/6 RX)
0x54 5 TPU chan 4 (EVE pulse 0)
0x55 5 TPU chan 5 (EVE pulse 1)
0x56 5 TPU chan 6 (EVE pulse 2)
0x57 5 TPU chan 7 (EVE pulse 3)
0x58 5 TPU chan 8 (EVE /tyCo/3 TX)
0x59 5 TPU chan 9 (EVE /tyCo/4 TX)
0x5A 5 TPU chan 10 (EVE /tyCo/5 TX)
0x5B 5 TPU chan 11 (EVE /tyCo/6 TX)
0x5C 5 TPU chan 12 (EVE /tyCo/3 RTS)
0x5D 5 TPU chan 13 (EVE /tyCo/4 RTS)
0x5E 5 TPU chan 14
0x5F 5 TPU chan 15 (vxWorks sysClk)

0x75 5 Dynatem DLAN Adapter

0x80 3 DMEM20 PCMCIA Board
0x81 3 DMEM20 PCMCIA Board

 sys-

ilable

ons)

ctor

when
s the
0x82 3 DMEM20 PCMCIA Board
0x83 3 DMEM20 PCMCIA Board
0x84 3 DMEM20 PCMCIA Board
0x85 3 DMEM20 PCMCIA Board
0x86 3 DMEM20 PCMCIA Board
0x87 3 DMEM20 PCMCIA Board
0x88 3 DMEM20 PCMCIA Board
0x89 3 DMEM20 PCMCIA Board
0x8A 3 DMEM20 PCMCIA Board
0x8B 3 DMEM20 PCMCIA Board (Card Insert/Remove IRQ)
0x8C 3 DMEM20 PCMCIA Board
0x8D 3 DMEM20 PCMCIA Board
0x8E 3 DMEM20 PCMCIA Board (ATA IRQ)
0x8F 3 DMEM20 PCMCIA Board

0xD0 3 VSER80 8 Channel Serial Card
0xD1 3 VSER80 Modem Interrupt
0xD2 3 VSER80 TX Interrupt
0xD3 3 VSER80 RX Interrupt
0xD7 3 VSER80 Bad RX Interrupt

5. VME BUS / Development Notes:

Here are a few things to keep track of when using and/or designing an interface for a VME
tem. First, a good reference to the VME bus is needed. For this access the Vita web site:

http://www.vita.com/
This site has pointers to manufacturers, documentation and more. A good reference is ava
from them:

The VME bus Handbook (A Users buide to the VME64 and VME64X bus specificati
by Wade D. Peterson

Tid-bits from that book:
• On an interface, put chips which have signal lines to the bus within 2” of the conne

and put no more than 2 IC’s on 1 bus line.
• Bypass Capacitors of .01 or .1 f should be placed on all backplane terminators.
• Capacitive loading on the bus should be kept <17pf
• Bipolar TTL receivers need input clamping diodes on all lines: A1-15, AM0-AM5,

DS0,DS1,Sysclk, Write, D0-D7

6. VME Bus Errors:

Errors of the type reported by VxWorks:
Bus Error
Invalid ESF type 0xc
Task: 0x133fa0 "tTermIn"

Can be caused by more than one type of error. Some are caused by failure of the VME bus
either the slave module fails to assert DTACK* low (data transfer acknowledge) or else drive

r is
ystem

red and

sus-
using
-
n be

ove,
nable
 data
hich
 some-

ular

raceful
def-
r the
ifferent
) is:
BERR* (bus error) signal low or else the bus timer module on the cpu drives it low. Anothe
when a task overflows its stack allocation. These type messages are only reported to the s
console, and not via the general purpose log message utility and as a result cannot be captu
recorded in the PAM system log file. They are generated by modules in the Vx Library:

“$PAM/pam3/vx/lib/libMC68010gnuvx.a”
as the result of the hardware induced error signals. When this happens the calling task is
pended by Vxworks and it cannot continue running until resumed. This can be observed by
the “i” command and noting that the condition of the task “0x133fa0 tTermIn” is indeed sus
pended. On the Elf development system (or one with the Vx monitor running) this task ca
resumed via the command “taskResume 0x133fa0.” On newer versions of EVE, it can be
restarted with the ‘entersys’ command “tr 0x133fa0.” Of course, on the example given ab
the task which was suspended is the terminal input task, so on EVE the operator would be u
to talk to EVE to do this. On the bright side the remaining system tasks are able to run so
acquisition is generally not interrupted. However it is a good idea for an operator to check w
task is suspended if that is possible an attempt to restart it. The pcmcia lock-up problem is
times caused by this type of error.
If a stack overflow error is suspected, the command “checkStack” will show which any partic
task has suffered this type of error.

Signal Handlers
Special routines under VxWorks can be set up to catch and process these errors in a more g
way using thesigLib software signal facility library. These require references to the signal.h
initions. For the Bus Error shown, this is defined as SIGSEGV. A signal handler is specific fo
task it was setup for. That means potentially for bus errors generated by slave boards, a d
handler will be needed for each. The basic appearance of this code (valid for VxWorks 5.1

#include "signal.h"
#include "sigLib.h"
#include "setjmp.h"

static jmp_buf goHere;
void sigHandler();
SIGVEC newSignal;

VOID test1()
{
 unsigned int mem, val;
 short *addr;
 unsigned char ival;

 /* Setup for Exception Signal Handling.
 * Establish signal handler first.
 * Initial setjmp call returns 0, and represents the place
 * in the code where the execution environment is restored to.
 * longjmp from signal returns !=0 and conditional code is executed.
 */

ounter
rdPre-
/IO
hain,
same
 the
ng to
VME
y be
 con-

ed

ed an
out,
 newSignal.sv_handler = sigHandler;
 newSignal.sv_mask = 0;
 newSignal.sv_flags = 0;
 sigvec(SIGSEGV, &newSignal, NULL); /* For Bus Error */
 if (setjmp(goHere) != 0)
 { printf("\nSignal Return from longjump");
 }

 /* Read and process forever... */
 while(1)
 {
 here is the main task execution flow;
 }
}

void sigHandler()
{
 printf("\nThis Works! signal capture from sigHandler");
 longjmp(goHere,-1);
}

Bus Errors and the DMEM20 PCMCIA Board:
Bus signal timing is marginal for the dmem20 board and as a result it is not unusual to enc
bus errors with it. As an example, in one case the DMEM20 responded to the routine “boa
sent” properly while it was sitting in the VME chassis in it’s normal postion between the CPU
and the VADC boards; however, when placed on the VME extender board at the end of the c
it failed to respond properly and a bus error occurred. Other situations have produced the
type errors such as extremely cold operation (<-5-10C) in the temperature chamber and in
Arctic Sheba program. This is presumed to be caused by poor DTACK signal response timi
the CPU access (read/write is initiated by the cpu setting AS*, address-strobe low, when the
address is setup and in response it requires the DMEM20 slave to reply with DTACK). It ma
related to the slightly high system clock speed used on the DCOM332 although this is pure
jecture.
Note: why the signal handler in the “boardPresent” routine did not catch the occurance not
above needs to be determined.

7. VME Static RAM: bootup errors, 991123

Note: During testing of the 4 new DCOM332 and DMEM20 boards Steve Horan encounter
‘always’ bootup failure using the EVE-PROM 990925 version (same as CASES99 with fast
cardcopy, soft-reboot). EVE would never boot up, halting at the:

Setup DCOM332 serial ports
Look for VSER80 board

g the

or-
d on
E
lls
vicinity of the code. Steve reports that the only way he could get it to boot was by removin
SRAM battery, thereby flushing it totally, and then proceeding. With the battery in, the
DCOM332 would not boot. My observation is that this is probably in the VME bus access p
tion where ‘boardPresent’ is called for the VSER80, VADC21, DMEM20, etc. That is base
my own experience with commenting that code out and seeing the soft reboot work. MOR
INVESTIGATION NEEDED..... Sending temp. PROM to Steve with those boardPresent ca
commented out.

8. SIZEOF storage allocation:

 Size of int = 4
 Size of short = 2
 Size of long = 4
 Size of char = 1
 Size of unsigned = 4
 Size of float = 4
 Size of double = 8

 Max. of int = 2147483647
 Min. of int = -2147483648
 Max. of short = 32767
 Min. of short = -32768
 Max. of long = 2147483647
 Min. of long = -2147483648
 Max. of char = 127
 Min. of char = -128
 Max. of unsigned = 4294967295

nsor
red in

sen-

ua-

ses,
al
pared

 with
9. COVAR Accuracy, Negative Covars and Usage of COVARDP:

Negative EVE Covars can be erroneously generated!
This situation occurred frequenctly during IHOP-02 at station #1 when covars for a CO2 se
were being calculated; specifically the variance of co2’co2’. The problem can be encounte
2 ways:

- At the next ‘output’ cycle after EVE does either a start/stop, or else when the
sor itself starts/stop its data output to EVE.

- When the scalar mean of the data parameter is large with respect to its flux
tions.

The problem is due to improper mathematical precision (round-off error);
i.e. Covars generated by Task: NONE COVAR COVARDP

When

The problem can be simulated by sending EVE ‘fake’ sensor data

The solution to the problem is to use EVE double-precision covar calculations. EVE has 3 differ-
ent methods for calculating covariances (see ‘stats.c’ code for where this is done)

 COVAR Single Precision
COVARDP Double Precision
COVARXP Mixed Precision.

Normally, single precision covar is sufficient except in the situations mentioned. In those ca
COVARDP overcomes this problem.There are as yet un-ivestigated issues involving residu
noise in the normal covars. The relative magnitude of these is considered insignificant com
with the magnitude of the covars themselves.

The cost of using covar/covardp with EVE is in processing overhead. In measured approximate
percentage of overall cpu cycles:

EVE-Task No-Cov COVAR COVARDP
Fastout 3% 3% 3%
Sonic Ingest 20% 30% 40%
Sync na 6% 8%
Interrupts 30% 30% 30%

These may be inflated numbers but represent the significant processing burden associated
generating approximately 13 covariances for a sonic anemometer:
uu,uv,uw,utc,vv,vw,vtc,ww,wtc,uco2,vco2,wco2,co2co2.

c2 c()2–

c∆ c«()

ance a
 data

 cre-
ED”
t

the
sure
AD
rsion

ger

er
r pos-
e will
10. Scale and Bias of Calibrations:

scale = slope in Y=aX+b

When the term calibrated is used, it means that a data value is in engineering units. For inst
net radiation of 450 W/m**2 is a calibrated value. An uncalibrated value generally means a
parameter in some intermediate form. An example might be net radiation of 23.4 mV.

11. Signed and Unsigned quantities:

The terms “SIGNED” and “UNSIGNED” are used in the configuration file as parameters for
ating the pseudo-ASCII values which are transmitted via GOES satellite. If a value is “SIGN
then when converted to an integer, it must fit within the range of signed integer with the righ
number of bits. If it is “UNSIGNED” it must fit within the range of an unsigned integer with
right number of bits. When a floating point number is converted to an integer, EVE makes
the integer is small enough to fit in the proper number of bits. If it is too big, then a special “B
VALUE” is used instead. Here is an example to demonstrate how the parameters for conve
to an integer are calculated:

Temperature.
Desired range is -30 DEG C to +50 DEG C
Desired resolution is 0.02 DEG C
-Find the proper multiplier ‘a’ (or slope) for converting the calibrated temperature to an inte
value.
 a = 1 / .02
 a = 50
-Find the proper size of pseudo-ASCII value for the conversion.
 1 byte = 6 bit integer = 0 to 63 unsigned or -31 to 31 signed
 2 bytes = 12 bit integer = 0 to 4095 unsigned or -2047 to 2047 signed
 3 bytes = 16 bit integer = 0 to 65535 unsigned or -32767 to 32767 signed
 (Note that 3 bytes can also be 18 bits in PAM III but in PAM II only
 16 bits were used.)

 Imax = (50 - (-30)) * a
 Imax = 80 * 50
 Imax = 4000

 So we can use the 2 byte value since it can go up to 4095.

 -Finally we need to find the offset ‘b’. We have two choices: either we can offset the integ
value so it is always positive (unsigned), or we can offset the integer value so that it is eithe
itive or negative (signed). The standard PAM method has been to use a signed value, so w
do that.

2047

p to
ly pre-
ames
’ are
ust be
 (not
 Negative MAX = -30 * a
 Negative MAX = -30 * 50
 Negative MAX = -1500
 -2047 < -1500 so this is OK
 Positive MAX = 50 * a
 Positive MAX = 2500
 2500 > 2047 this is not OK.
 b = 2047 - 2500
 b = -453

 We can round off a little bit since we have some extra room
 (4095 > 4000).
 Thus we declare: b = -500

Temp Min = (-2047 - b) / a
Temp Min = (-2047 + 500)/50
Temp Min = -30.96
Temp Max = (2047 - b) / a
Temp Max = (2047 + 500) / a
Temp Max = 50.94

If the scaled and offset temperature value is less than -2047 (-30.96 DEG C) or greater than
(50.94 DEG C) EVE will use the “BAD VALUE” number instead.

12. Status Parameters:

Although PAM III is currently transmitting about 30 of its status parameters, it can transmit u
63 parameters. Some of these parameters are internal status parameters, others are simp
defined names, and the rest are available for anything else. Here is the list of predefined n
including the internal ones. The parameters with their associated number postfixed with a ‘*
internal and cannot be assigned from other parameters. The names which are not internal m
assigned from a sensor data or sensor status parameter. The other numbers from 26 to 63
shown in the table) can also be used for sensor data or sensor status parameters.

Name Num Description
============= === ======================================
BATT_I 16 Batttery load current.
BATT_V 8 Battery voltage.
BATT_TEMP 15 Battery box temperature.
BOX_TEMP 12 Electronic Box temperature.
C_ERRORS 1* Code errors.
CHARGE_I 14 Charging current on battery.
CLEAN_MIRROR 11 Dirty mirror signal for dew-point hygrometer.
GIB_ERR 10 Historical PAM II G.I.B. (A/D board) errors.

 serial
 input
ors and
ted if

63. It
often,

ro-
PRES_ERR 3 Pressure sensor errors.
PRES_ID 2 Pressure sensor ID.
T_RH_ERR 5 Temperature/humidity sensor errors.
T_RH_ID 4 Temperature/humidity sensor ID.
VERSION 9* Configuration file checksum.
VISIT 13* Internal Visit status bit-field.
WATCHDOG 7* Internal Watchdog status (increments by 1 on output).
WIND_ERR 6 Wind sensor errors.
WIND_ID 17 Wind sensor ID.
FORMAT 18* Configuration format ID.
STATION_ID 19* Station ID.
YEAR 20* Real-time year.
JDAY 21* Real-time day of year.
HOUR 22* Real-time hour.
MIN 23* Real-time minute.
SEC 24* Real-time second.
UNIX_TIME 25* Unix style 32 bit time.

The EVE data system creates status type parameters for each sensor attached to it. Every
type sensor has a possible \ID and a possible \ERROR value. The \ID is captured from the
message, and \ERROR is incremented if a message is not read properly. Analog input sens
pulse input sensors have no \ID value, but they do have an \ERROR value which is incremen
an error occurs while reading data.

The EVE command “STATUS:” assigns the sensor status values to the status numbers up to
also assigns the status priority queue to determine which status parameters are sent most
and in what order.

13. Logic Families:

74F - Fast Logic:
74F logic is a general-purpose family of high-speed advanced bipolar logic. P
vides functions, including gates, buffers/drivers, bus transceivers, flip-flops,
latches, counters, multiplexers, and demultiplexers in the 74F logic family.

CD4000 - CMOS Logic
ABT - Advanced BiCMOS Technology
FB - Backplane Transceiver Logic
ABTE - Advanced BiCMOS Technology / Enhanced Transceiver Logic
FCT - Fast CMOS Technology
AC - Advanced CMOS Logic
GTL - Gunning Transceiver Logic
ACT - Advanced CMOS Logic
HC - High-Speed CMOS Logic

he
-

igh-
C
-

is
h
eed

-
xers.

ance

at

ed
hs
er per-
ers,
lti-
High-speed CMOS (HCMOS) offers low power and low noise at a low price. T
HC family offers CMOS-compatible inputs and the HCT family offers TTL-com
patible inputs.
While HCMOS can be used in most new designs, TI recommends Advanced H
speed CMOS (AHC) as your reliable and effortless migration path from the H
family. AHC delivers the same low noise as HC, with half the static power con
sumption of HC, at a competitive price.

AHC - Advanced High-Speed CMOS
HCT - High-Speed CMOS Logic
AHCT - Advanced High-Speed CMOS
HSTL - High Speed Transceiver Logic
ALB - Advanced Low-Voltage BiCMOS
JTAG - Boundary Scan Logic
ALS - Advanced Low-Power Schottky Logic

The ALS family provides a full spectrum of over 130 bipolar logic functions. Th
family, combined with the AS family, can be used to optimize systems throug
performance budgeting. By using AS in speed-critical paths and ALS where sp
is less critical, designers can optimize speed and power performance.
The ALS family includes gates, flip-flops, counters, drivers, transceivers, regis
tered transceivers, readback latches, clock drivers, register files, and multiple

LS - Low-Power Schottky Logic
With a wide array of functions, the LS family is a mature, older, higher power
technology. These classic line of devices were at the cutting edge of perform
upon introduction and continue to deliver excellent value for many of today's
designs.

ALVC - Advanced Low-Voltage CMOS Technology
LV - Low-Voltage CMOS Technology
ALVT - Advanced Low-Voltage BiCMOS Technology
LVC - Low Voltage CMOS Technology
AS - Advanced Schottky Logic:

The AS family of high-performance bipolar logic includes over 90 functions th
offer high drive capabilities.
This family, combined with the ALS family, can be used to optimize system spe
and power through performance budgeting. By using AS in speed-critical pat
and ALS where speed is less critical, designers can optimize speed and pow
formance. The AS family includes gates, flip-flops, counters, drivers, transceiv
registered transceivers, readback latches, clock drivers, register files, and mu
plexers.

LVT - Low-Voltage BiCMOS Technology
AVC - Advanced Very-Low-Voltage CMOS Logic
PCA - Personal Computer I2C Interface
BCT - BiCMOS Technology
lobS - Schottky Logic
CBT - Crossbar Technology
SSTL - Stub Series Terminated Logic
CBTLV - Low-Voltage Crossbar Technology

TTL - Transistor-Transistor Logic
TVC - Translation Voltage Clamp

	1. How to Build EVE EPROMs:
	2. EVE VxWorks Info.
	3. EVE Code Overview:
	4. VME / DCOM332 Addresses and Interrupt Vectors:
	5. VME BUS / Development Notes:
	6. VME Bus Errors:
	7. VME Static RAM: bootup errors, 991123
	8. SIZEOF storage allocation:
	9. COVAR Accuracy, Negative Covars and Usage of COVARDP:
	10. Scale and Bias of Calibrations:
	11. Signed and Unsigned quantities:
	12. Status Parameters:
	13. Logic Families:

